• 제목/요약/키워드: Zr-Al alloys

검색결과 124건 처리시간 0.024초

TiN/Ti 다층막 코팅된 생체용 Ti-30Ta-xZr 합금의 부식특성 (Corrosion Characteristics of TiN/Ti Multilayer Coated Ti-30Ta-xZr Alloy for Biomaterials)

  • 김영운;조주영;최한철
    • Corrosion Science and Technology
    • /
    • 제8권4호
    • /
    • pp.162-169
    • /
    • 2009
  • Pure titanium and its alloys are drastically used in implant materials due to their excellent mechanical properties, high corrosion resistance and good biocompatibility. However, the widely used Ti-6Al-4V is found to release toxic ions (Al and V) into the body, leading to undesirable long-term effects. Ti-6Al-4V has much higher elastic modulus than cortical bone. Therefore, titanium alloys with low elastic modulus have been developed as biomaterials to minimize stress shielding. For this reason, Ti-30Ta-xZr alloy systems have been studied in this study. The Ti-30Ta containing Zr(5, 10 and 15 wt%) were 10 times melted to improve chemical homogeneity by using a vacuum furnace and then homogenized for 24 hrs at $1000^{\circ}C$. The specimens were cut and polished for corrosion test and Ti coating and then coated with TiN, respectively, by using DC magnetron sputtering method. The analyses of coated surface were carried out by field emission scanning electron microscope(FE-SEM). The electrochemical characteristics were examined using potentiodynamic (- 1500 mV~+ 2000 mV) and AC impedance spectroscopy(100 kHz~10 mHz) in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The equiaxed structure was changed to needle-like structure with increasing Zr content. The surface defects and structures were covered with TiN/Ti coated layer. From the polarization behavior in 0.9% NaCl solution, The corrosion current density of Ti-30Ta-xZr alloys decreased as Zr content increased, whereas, the corrosion potential of Ti-30Ta-xZr alloys increased as Zr content increased. The corrosion resistance of TiN/Ti-coated Ti-30Ta-xZr alloys were higher than that of the TiN-coated Ti-30Ta-xZr alloys. From the AC impedance in 0.9% NaCl solution, polarization resistance($R_p$) value of TiN/Ti coated Ti-30Ta-xZr alloys showed higher than that of TiN-coated Ti-30Ta-xZr alloys.

치과주조용 Ti-X%Zr(X=10,20,40)합금의 연삭성 (Grindability of Cast Ti-X%Zr(X=10,20,40) Alloys for Dental Applications)

  • 정종현;노형록
    • 대한치과기공학회지
    • /
    • 제33권4호
    • /
    • pp.263-270
    • /
    • 2011
  • Purpose: The grindability of binary Ti-X%Zr(X=10,20,40) alloys in order to develop a Ti alloy with better machinability than unalloyed titanium has been evaluated. Methods: Experimental Ti-Zr alloys were made in an argon-arc melting furnace. Slabs of experimental alloys were ground using a SiC abrasive wheel on an electric handpiece at circumferential speeds(12000,18000,25000 or 30000rpm) by applying a force(200gr). Grinding rate was evaluated by measuring the amount of metal volume removed after grinding for 1 minute and the volume ratio of metal removed compared to the wheel material lost, which was calculated from the diameter loss (grinding ratio). Experimental datas were compared to those for cp Ti(commercially pure titanium) and Ti-6%Al-4%V alloy were used controls. Results: It was observed that the grindability of Ti-Zr alloys increased with an increase in the Zr concentration. More, they are higher than cp Ti, particularly the Ti-20%Zr alloy exhibited the highest grindability at all circumferential speeds. There was significant difference in the grinding rate and grinding ratio between Ti-20%Zr alloy and cp Ti at any speed(p<0.05). Conclusion: By alloying with Zr, the Ti exhibited better grindability at all circumferential speeds. the Ti-20%Zr alloy has a great potential for use as a dental machining alloy.

Fe-30Al-5Cr 합금의 기계적 성질 및 파면양상에 미치는 Ti, Hf 및 Zr의 첨가효과 (Effects of Ti, Hf and Zr Alloying Elements on Mechanical Properties and Fracture Behaviors of Fe-30Al-5Cr Alloys)

  • 김성수;주성민;주형곤;이도재;최답천
    • 한국주조공학회지
    • /
    • 제21권1호
    • /
    • pp.24-32
    • /
    • 2001
  • Recently, iron aluminides based on Fe3Al and FeAl are ordered intermetallic alloys that offer good oxidation resistance, excellent sulfidation resistance, and potentially lower cost than many high-temperature structural materials. They have better strength, elasticity to weight ratio and high temperature strength, therefore, they can be cosidered as candidate heat resistance structural materials for automobiles, ships, airplanes and spaceships applications. The changes in the mechanical properties and fracture behavior were investigated for Fe-30at.%Al-5at.%Cr alloys when Ti, Hf and Zr were added respectively. For mechanical properties such as Rockwell hardness and yield strength at room temperature, those were decreased in the case of Fe-30at.%Al-5at.%Cr alloy then increased in the case of 5at.% and 10at.% addition of Ti alone. However, Rockwell hardness and yield strength decreased again at 15%Ti then increased dramatically due to the precipitation hardening of the second phase on the specimen at 20%Ti. For fracture modes, cleavage fracture showed in the case of Fe-30at.%Al and Fe-30at.%Al-5at.%Cr alloys. As the amount of Ti addition changed cleavage to transgranular fracture and to quasi-cleavage fracture at 20%Ti. When Hf, Zr and Hf+Zr were added respectively, transgranular, cleavage and quasi-cleavage fracture were coexisted.

  • PDF

Evolution of Metastable $L1_2-Al_3(Nb_xZr_{1-x})$ Phases in Rapidly Quenched Al-Nb-Zr Alloys

  • Park, Min-Woo
    • 한국주조공학회지
    • /
    • 제27권6호
    • /
    • pp.250-254
    • /
    • 2007
  • 3원계 Al-Nb-Zr의 용응 합금을 스프렛 ?봬?(splat-quenching) 방법을 이용하여 급속냉각응고 한 후, 응고된 시편을 698K에서 200시간까지 열처리하여 상전이를 연구하였다. 급속응고 및 열처리된 시편의 미세구조는 X-선 회절 및 투과전자 현미경으로 분석하였다. Al-1.95Nb-0.65Zr, Al-1.3Nb-1.3Zr, 및 Al-0.65Nb-1.95Zr (at%) 3원 합금계를 연구하였다. 각 합금의 조성은 Vegard's 법칙을 적용하여 Al(${\alpha}$)의 기지조직과 $L1_2-Al_3(Nb,Zr)$의 석출상들이 정합을 이루도록 선택되었다. 급속응고된 후 각 합금은 과고용된 Al(${\alpha}$)의 고용상을 형성하였다. Al-1.3Nb-1.3Zr, 및 Al-0.65Nb-1.95Zr의 급속응고된 상태의 시편을 698K에서 열처리하여 알루미늄 기지와 정합의 계면을 갖는 $L1_2-Al_3(Nb_{0.5}Zr_{0.5})$$L1_2-Al_3(Nb_{0.25}Zr_{0.75})$의 상을 각각 석출하였다. 반면 Al-1.95Nb-0.65Zr 합금은 평형상인 $D0_{22}-Al_3(Nb_{0.75}Zr_{0.25})$ 상을 석출하였다. 준안정상의 정합 $Al_3(Nb,Zr)$ 미세 분산상 석출은 입자의 조대화를 억제하고 재료의 고온 강도를 증가될 것으로 사료된다.

Ni-Al-Fe 3 원계합금의 미세조직 및 기계적 특성 (Microstructures and Mechnical Properties of Ni-Al-Fe Ternary Alloys)

  • 최답천;배대성
    • 한국주조공학회지
    • /
    • 제24권6호
    • /
    • pp.356-365
    • /
    • 2004
  • Mechanical properties and microstructures of the Ni-AI-Fe and Ni-AI-Fe-(B, Zr) alloys which containing $10{\sim}30at$.%Fe, 0.1at.%B and/or 0.1at.%Zr have been investigated. The experimental results showed that the microstructures of Ni25Al were changed from a single phase ${\gamma}$ to dual phase ${\gamma}$ and ${\beta}$ by addition of 27at.%Fe. Ni45Al, however, kept the single ${\beta}$ phase even though Fe was added upto 30at.%. The hardness of Ni25Al were increased from $H_RB$ 70 to $H_RC$ 39 by addition of 27at.%Fe. In the case of Ni45Al which have $H_RC$ 37, the hardness was decreased by lOat.%Fe addition, but increased with 30at.%Fe. The yield strength and ultimate compressive strength in the compressive test have showed a similar trend with the hardness change. The strain to fracture was 14% at maximum and achieved in Ni25Al-27at.%Fe and Ni25Al-27at.%Fe-0.1 at.%B alloys. The Ni45Al showed a relatively low strain to fracture as 4%. The impact absorption energy of Ni25Al increased from 0.74 kg-m to 1.81 kg-m by addition of 27at.%Fe. In case of Ni45Al, the addition of lOat.%Fe and lOat.%Fe with small amounts of Band Zr did not change significantly the impact absorption energy of 0.60 kg-m, whereas the addition of 30at.%Fe with small amounts of B and Zr increased it slightly. In fracture tests, both of two basic materials showed the same intergranular fracture but by adding Fe it changed to the cleavage fracture mode or co-existing of cleavage and intergranular fractures.

Al-Li-Cu-Mg-Zr 합금의 미고용상에 미치는 용체화 처리 및 Mn 함량의 영향 (The Effect of Mn Content Solution-treatment Temperatures on Insoluble Phases in Al-Li-Cu-Mg-Mn-Zr Alloys)

  • 신현식;;조권구;정영훈;신명철
    • 분석과학
    • /
    • 제7권4호
    • /
    • pp.517-526
    • /
    • 1994
  • Mn의 함량을 달리하여 제조한 Al-Li-Cu-Mg-Mn-Zr 합금의 미고용상 및 분산상을 EPMA(Electron Probe Microanalyzer)와 SAEM(Scanning Auger Electron Microscope)으로 분석하였다. 또한 미고용상의 부피 분율, 분포 및 형태를 광학현미경으로 관찰하였으며, 상온과 고온에서의 인장 특성을 조사하였다. Mn의 함량이 증가함에 따라 미고용상의 부피분율을 급격히 증가하고 연신율을 감소하였다. Mn은 기지 조직의 결정립을 미세하고 균일하게 분포하도록 하였다. 인장시험 결과, 0.44 wt% Mn이 첨가된 합금이 다른 합금보다 우수한 기계적 특성을 나타내었다.

  • PDF

Electrochemical Behaviors of Binary Ti-Zr Alloys

  • Oh, M.Y.;Kim, W.G.;Choe, H.C.;Ko, Y.M.
    • Corrosion Science and Technology
    • /
    • 제8권2호
    • /
    • pp.89-92
    • /
    • 2009
  • Pure Ti as well as Ti-6Al-4V alloy exhibit excellent properties for dental implant applications. However, for a better biocompatibility it seems important to avoid in the composition the presence of V due to the toxic effects of V ion release. Thus Al and V free and composed of non-toxic element such as Nb, Zr alloys as biomaterials have been developed. Especially, Zr contains to same family in periodic table as Ti. The addition of Zr to Ti alloy has an excellent mechanical properties, good corrosion resistance, and biocompatibility. In this study, the electrochemical characteristics of Ti-Zr alloys for biomaterials have been investigated using by electrochemical methods. Methods: Ti-Zr(10, 20, 30 and 40 wt%) alloys were prepared by arc melting and homogenized for 24 hr at $1000^{\circ}C$ in argon atmosphere. Phase constitutions and microstructure of the specimens were characterized by XRD, OM and SEM. The corrosion properties of the specimens were examined through potentiodynamic test (potential range of -1500 ~ 2000 mV), potentiostatic test (const. potential of 300 mV) in artificial saliva solution by potentiostat (EG&G Co, PARSTAT 2273. USA).

MAGNETIC PROPERTIES OF Fe-Al-B-Zr-Cu ALLOYS WITH FINE NANOCRYSTALLINE STRUCTURE

  • Kim, K.J.;Park, J.Y.;Kim, K.Y.;Noh, T.H.;Kang, I.K.
    • 한국자기학회지
    • /
    • 제5권5호
    • /
    • pp.491-495
    • /
    • 1995
  • The crystallization behaviors and magnetic properties for $Fe_{81-x}Al_{4}B_{10}Zr_{5}Cu_{x}$ (x=0, 1, 2 at%) alloys is investigated. By the addition of 1~2 Cu, the temperature range, where a single bcc phase exists, expands largely over 200 K and the grain size of bcc phase represents to less than 10 nm. For the optimally annealed Cu-added alloys, the high $\mu_{e}$ (1 kHz) above 20000 combined with the high $B_{10}$ of about 1.4 T is obtained in nanocrystalline state. The low core loss of 95.8 W/kg at 0.1 T and 100 kHz is confirmed for the nanocrystalline $Fe_{80}Al_{4}B_{10}Zr_{5}Cu_{1}$ alloy.

  • PDF