• Title/Summary/Keyword: Zr-Al alloys

검색결과 124건 처리시간 0.022초

Mechanical Properties and Bio-Compatibility of Ti-Nb-Zr-HA Biomaterial Fabricated by Rapid Sintering Using HEMM Powders (고에너지 밀링분말과 급속소결을 이용한 Ti-Nb-Zr-HA 생체복합재의 기계적 성질 및 생체적합성)

  • Park, Sang-Hoon;Woo, Kee-Do;Kim, Sang-Hyuk;Lee, Seung-Min;Kim, Ji-Young;Ko, Hye-Rim;Kim, Sang-Mi
    • Korean Journal of Materials Research
    • /
    • 제21권7호
    • /
    • pp.384-390
    • /
    • 2011
  • Ti-6Al-4V ELI (Extra Low Interstitial) alloy has been widely used as an alternative to bone due to its excellent biocompatibility. However, it still has many problems, including a high elastic modulus and toxicity. Therefore, nontoxic biomaterials with a low elastic modulus should be developed. However, the fabrication of a uniform coating is challenging. Moreover, the coating layer on Ti and Ti alloy substrates can be peeled off after implantation. To overcome these problems, it is necessary to produce bulk Ti and Ti alloy with hydroxyapatite (HA) composites. In this study, Ti, Nb, and Zr powders, which are biocompatible elements, were milled in a mixing machine (24h) and by planetary mechanical ball milling (1h, 4h, and 6h), respectively. Ti-35%Nb-7%Zr and Ti-35%Nb-7%Zr-10%HA composites were fabricated by spark plasma sintering (SPS) at $1000^{\circ}C$ under 70MPa using mixed and milled powders. The effects of HA addition and milling time on the biocompatibility and physical and mechanical properties of the Ti-35%Nb-7%Zr-(10%HA) alloys have been investigated. $Ti_2O$, CaO, $CaTiO_3$, and $Ti_xP_y$ phases were formed by chemical reaction during sintering. Vickers hardness of the sintered composites increases with increased milling time and by the addition of HA. The biocompatibilty of the HA added Ti-Nb-Zr alloys was improved, but the sintering ability was decreased.

Thermodynamics of Hydrogen-Induced Phase Separation on Pd-Co Alloys (수소유기에 따른 Pd-Co합금들의 상 분리 현상에 대한 열역학적 고찰)

  • Song, D.M.;Park, C.N.;Choi, J.
    • Journal of Hydrogen and New Energy
    • /
    • 제16권3호
    • /
    • pp.244-252
    • /
    • 2005
  • It is very interesting and important in the academic point of view and in practical use the hydrogen-induced phase separation(HIPS) which appears during hydrogen heat treatment. Since hydrogen can be removed very fast by pumping it out the hydrogen-induced new lattice phase which can not be obtained without hydrogen can be preserved as meta-stable state. In this study it has been investigated whether the HIPS appear in Pd-Al, Pd-Co, Pd-Cr, Pd-Ti, Pd-V and Pd-Zr alloys and discussed thermodynamic representation of the HIPS. The Pd alloys were arc-melted under argon atmosphere and remelted 4 or 5 times for homogenization. The alloys were annealed at 600$^{\circ}C$ under vacuum for 24 hrs and then subjected to pressure-composition isotherm measurements at 100$^{\circ}C$. The hydrogen heat treatment(HHT) of samples was carried out at 600$^{\circ}C$ under hydrogen pressure of 70 bar for 6 days and PC isotherms at 100$^{\circ}C$ were measured. By comparing the PC isotherms measured before and after HHT, occurrence of phase separation was determined. The experimental results showed that the HIPS appeared only in Pd-0.05Co alloy. For Pd-Co alloys with various composition the PC isotherms were measured. By adopting Park-Flanagan model for ternary thermodynamics the Gibbs free energy change for Pd-Co-H solid solution was calculated and subsequently with this the HIPS in Pd-Co alloy was explained fairly.

Effects of Pd Addition on Electrode properties of Metal Hydride (Pd 첨가가 금속수소화물 전극 특성에 미치는 영향)

  • Choi, Jeon;Lee, Kyung-Ku
    • Journal of Hydrogen and New Energy
    • /
    • 제10권2호
    • /
    • pp.141-149
    • /
    • 1999
  • Recently the Ni/MH secondary battery has been studied extensively to achieve higher energy density, longer cycle life and faster charging-discharging rate etc. In this work, the electrode properties of $(LM)Ni_{4.49}Co_{0.1}Mn_{0.205}Al_{0.205}$ alloy and $Ti_{0.6}Zr_{0.4}V_{0.6}Ni_{1.4}$ alloy with addition of Pd were investigated. These alloys did not show any change in XRD pattern by Pd addition. As Pd was added as alloy element, the activation behavior was not affected significantly in both $AB_2$ type and $AB_5$ type electrodes and, On charging and discharging in high current density, Discharge capacity with increasing of Pd content was more decreased. But cycle life was showed increasing. Especially the electrode of $Ti_{0.6}Zr_{0.4}V_{0.6}Ni_{1.4}+0.5wt%$ Pd alloy was not almost decreased discharge capacity for 400cycles.

  • PDF

Study on the control technique for the heat transportation system using metal hydride (수소저장합금을 이용한 열수송시스템 제어기술 연구)

  • Sim, K.S.;Kim, J.W.;Kim, J.D.;Myung, K.S.
    • Journal of Hydrogen and New Energy
    • /
    • 제11권1호
    • /
    • pp.43-49
    • /
    • 2000
  • The heat transportation from a complex of industry to a rural area needs more efficient method because the distance between them is usually more than 10km. Conventional heat transportation using steam or hot water via pipe line has limits in transportation distance (about 3~5 km) because of the heat loss and frictional loss in the pipe line. Metal hydride can absorb or discharge hydrogen through exothermic or endothermic reaction. After releasing hydrogen from metal hydride by means of the waste heat from industry, we can transport this hydrogen to urban area via pipe line. In urban areas, other metal alloy reacts with this hydrogen to form metal hydride and produces heat for heating. Cool heat is also obtained if it is possible to use metal hydride with low reaction temperature. Therefore, metal hydride can be used as a media for transportation and storage of heat. $MmNi_{4.5}Al_{0.5}Zr_{0.003}$, $LaNi_5$, $Zr_{0.9}Ti_{0.1}Cr_{0.6}Fe_{1.4}$, $MmNi_{4.7}Al_{0.1}Fe_{0.1}V_{0.1}$ alloys were selected for this purpose and the properties of those metal hydrides were discussed. The design and control techniques were proposed and discussed for this heat transportation system using metal hydride.

  • PDF

Effect of Microstructure on the Environmentally Induced Cracking Behavior of Al-Zn-Mg-Cu-Zr Aluminum Alloy

  • Ghosh, Rahul;Venugopal, A.;Pradeep, PI;krishna, L. Rama;Narayanan, P. Ramesh;Pant, Bhanu;Cherian, Roy M
    • Corrosion Science and Technology
    • /
    • 제17권3호
    • /
    • pp.101-108
    • /
    • 2018
  • AA7010 is an Al-Zn-Mg-Cu alloy containing Zr, developed as an alternate to traditional AA7075 alloy owing to their high strength combined with better fracture toughness. It is necessary to improve the corrosion resistance and surface properties of the alloy by incorporating plasma electrolytic oxidation (PEO) method. AA7010-T7452 aluminum alloy has been processed through the forging route with multi-stage working operations, and was coated with $10{\mu}m$ thick $Al_2O_3$ ceramic aluminina coating using the plasma electrolytic oxidation (PEO) method. The corrosion, stress corrosion cracking (SCC) and nano-mechanical behaviours were examined by means of potentiodynamic polarization, slow strain rate test (SSRT) and nano-indentation tests. The results indicated that the additional thermomechanical treatment during the forging process caused a fully recrystallized microstructure, which lead to the poor environmental cracking resistance of the alloy in 3.5% NaCl solution, despite the overaging treatment. Although the fabricated PEO coating improved general corrosion resistance, the brittle nature of the coating did not provide any improvement in SCC resistance of the alloy. However, the hardness and elastic modulus of the coating were significantly higher than the base alloy.

HIGH BURNUP FUEL TECHNOLOGY IN KOREA

  • Song, Kun-Woo;Jeong, Yong-Hwan;Kim, Keon-Sik;Bang, Je-Geon;Chun, Tae-Hyun;Kim, Hyung-Kyu;Song, Kee-Nam
    • Nuclear Engineering and Technology
    • /
    • 제40권1호
    • /
    • pp.21-36
    • /
    • 2008
  • High bum-up fuel technology has been developed through a national R&D program, which covers key technology areas such as claddings, $UO_2$ pellets, spacer grids, performance code, and fuel assembly tests. New cladding alloys were developed through alloy designs, tube fabrication, out-of-pile test and in-reactor test. The new Zr-Nb tubes are found to be much better in their corrosion resistance and creep strength than the Zircaloy-4 tube, owing to an optimized composition and heat treatment of the new Zr-Nb alloys. A new fabrication technology for large grain $UO_2$ pellets was developed using various uranium oxide seeds and a micro-doping of Al. The uranium oxide seeds, which were added to $UO_2$ powder, were prepared by oxidizing and heat-treating scrap $UO_2$ pellets. A $UO_2$ pellet containing tungsten channels was fabricated for a thermal conductivity enhancement. For the fuel performance analysis, new high burnup models were developed and implemented in a code. This code was verified by an international database and our own database. The developed spacer grid has two features of contoured contact spring and hybrid mixing vanes. Mechanical and hydraulic tests showed that the spacer grid is superior in its rodsupporting, wear resistance and CHF performance. Finally, fuel assembly test technology was also developed. Facilities for mechanical and thermal hydraulic tests were constructed and are now in operation. Several achievements are to be utilized soon by the Korea Nuclear Fuel and thereby contribute to the economy and safety of PWR fuel in Korea

Instrumented Impact Test using Subsize Charpy Specimen for Evaluating Impact Fracture Behavior in Bulk Amorphous Metals (벌크 아몰퍼스 금속의 충격파괴 거동 평가를 위한 미소 샬피 시험편을 사용한 계장화 충격 시험법)

  • Shin, Hyung-Seop;Ko, Dong-Kyun;Jung, Young-Jin;Oh, Sang-Yeob;Kim, Moon-Saeng
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.101-106
    • /
    • 2003
  • In order to investigate the mechanical behavior of newly developed materials, the evaluation of mechanical properties using small-size specimen is essential. For those purposes, an instrumented impact testing apparatus, which provides the load-displacement curve under impact loading without oscillations, was devised. To develop the test procedure with the setup, the impact behaviors of various kinds of structural materials such as S45C, SCM4, Ti alloys (Ti-6V-4Al) and Zr-based bulk amorphous metal, were investigated through the instrumented Charpy V-notch impact tests. The calibrations of the dynamic load and displacement that was calculated based on the Newton' second law were carried out through the quasi-static load test and the comparison of a directly measured value using a laser displacement meter. Satisfactory results could be obtained. The crack initiation and propagation processes during impact fracture could be well divided on the curve, depending on the intrinsic characteristic of specimen tested; ductile or brittle. The absorbed impact energy in Zr-basd BAM was largely used for crack initiation not for crack propagation process. The fracture surfaces under impact loading showed different feature when compared with the static cases.

  • PDF

A Study on Metal-Porcelain Fusing Layer in Porcelain Fused to High Gold Alloy (도재소부용 고금함유금합금의 연구 - 도재 결합층을 중심으로 -)

  • Lee, Kee-Dae;Kwak, Dong-Ju
    • Journal of Technologic Dentistry
    • /
    • 제31권3호
    • /
    • pp.15-20
    • /
    • 2009
  • The success of the porcelain fused to gold alloy restoration depends not only on the choice of materials but to a larger degree on the technical skills. The porcelain fused to metal(PFM) alloys containing gold are commonly use for dental purposes in dental laboratory. The gold-colored alloys contain primarily gold, platinum, palladium, and silver, with minimum amounts of such metals as tin, iridium, or titanium. The purpose of this study is on the metal-porcelain fusing layer in porcelain fused to high gold alloy Principal results are as follows. The hardness number(Hv) of PFG is respectively $140.2{\pm}12.6$ in as-casted, $164.3{\pm}14.3$ in heat-treated, $186.6{\pm}20.4$ in fired-treated. The formation of the fusing(intermediate) layer caused by components fusing the interface of porcelain and gold alloy. The main components of the fusing(intermediate) layer are Na, Al, Si, K, Zn, Zr and Ce. The intermediate layer formed by the 2nd firing is more larger than the intermediate layer formed by the 1st firing.

  • PDF

Nanocomposite Magnetic Materials

  • Ludwig Schultz;Alberto Bollero;Axel Handstein;Dietrich Hinz;Karl-Hartmut Muller;Golden Kumar;Juergen Eckert;Oliver Gutfleisch;Anke Kirehner Aru Yan
    • Journal of Powder Materials
    • /
    • 제9권6호
    • /
    • pp.381-393
    • /
    • 2002
  • Recent developments in nanocrystalline and nanocomposite rare earth-transition metal magnets are reviewed and emphasis is placed on research work at IFW Dresden. Principal synthesis methods include high energy ball milling, melt spinning, mold casting and hydrogen assisted methods such as reactive milling and hydrogenation-disproportionation-desorption-recombination. These techniques are applied to NdFeB-, PrFeB- and SmCo-type systems with the aim to produce high remanence magnets with high coercivity. Concepts of maximizing the energy density in nanostructured magnets by either inducing a texture via anisotropic HDDR or hot deformation or enhancing the remanence via magnetic exchange coupling are evaluated. With respect to high temperature applications melt spun $Sm(Co_{0.74}Fe_{0.1}Cu_{0.12}Zr_{0.04})_{7.5}$ ribbons were prepared, which showed coercivities of up to 0.53 T at 50$0^{\circ}C$. Partially amorphous $Nd_{60}Fe_xCo_{30-x}Al_{10}(0{\leq}x{\leq}30)$ alloys were prepared by copper mold casting. The effect of transition metal content on the glass-forming ability and the magnetic properties was investigated. The $Nd_{60}Co_{30}Al_{10}$ alloy exhibits an amorphous structure shown by the corresponding diffraction pattern. A small substitution of Co by 2.5 at.% Fe results In the formation of Fe-rich crystallites embedded in the Nd-rich amorphous matrix. The Fe-rich crystallites show hard magnetic behaviour at room temperature with a coercivity value of about 0.4 T, relatively low saturation magnetization and a Curie temperature of 500 K.

Designing Materials for Hard Tissue Replacement

  • Nath, Shekhar;Basu, Bikramjit
    • Journal of the Korean Ceramic Society
    • /
    • 제45권1호
    • /
    • pp.1-29
    • /
    • 2008
  • In last two decades, an impressive progress has been recorded in terms of developing new materials or refining existing material composition/microstructure in order to obtain better performance in biomedical applications. The success of such efforts clearly demands better understanding of various concepts, e.g. biocompatibility, host response, cell-biomaterial interaction. In this article, we review the fundamental understanding that is required with respect to biomaterials development, as well as various materials and their properties, which are relevant in applications, such as hard tissue replacement. A major emphasize has been placed to present various design aspects, in terms of materials processing, of ceramics and polymer based biocomposites, Among the bioceramic composites, the research results obtained with Hydroxyapatite (HAp)-based biomaterials with metallic (Ti) or ceramic (Mullite) reinforcements as well as $SiO_2-MgO-Al_2O_3-K_2O-B_2O_3-F$ glass ceramics and stabilized $ZrO_2$ based bioinert ceramics are summarized. The physical as well as tribological properties of Polyethylene (PE) based hybrid biocomposites are discussed to illustrate the concept on how can the physical/wear properties be enhanced along with biocompatibility due to combined addition of bioinert and bioactive ceramic to a bioinert polymeric matrix. The tribological and corrosion properties of some important orthopedic metallic alloys based on Ti or Co-Cr-Mo are also illustrated. At the close, the future perspective on orthopedic biomaterials development and some unresolved issues are presented.