• 제목/요약/키워드: Zr-Al alloys

검색결과 124건 처리시간 0.023초

Practical Model for Predicting Beta Transus Temperature of Titanium Alloys

  • Reddy, N.S.;Choi, Hyun Ji;Young, Hur Bo
    • 한국재료학회지
    • /
    • 제24권7호
    • /
    • pp.381-387
    • /
    • 2014
  • The ${\beta}$-transus temperature in titanium alloys plays an important role in the design of thermo-mechanical treatments. It primarily depends on the chemical composition of the alloy and the relationship between them is non-linear and complex. Considering these relationships is difficult using mathematical equations. A feed-forward neural-network model with a back-propagation algorithm was developed to simulate the relationship between the ${\beta}$-transus temperature of titanium alloys, and the alloying elements. The input parameters to the model consisted of the nine alloying elements (i.e., Al, Cr, Fe, Mo, Sn, Si, V, Zr, and O), whereas the model output is the ${\beta}$-transus temperature. The model developed was then used to predict the ${\beta}$-transus temperature for different elemental combinations. Sensitivity analysis was performed on a trained neural-network model to study the effect of alloying elements on the ${\beta}$-transus temperature, keeping other elements constant. Very good performance of the model was achieved with previously unseen experimental data. Some explanation of the predicted results from the metallurgical point of view is given. The graphical-user-interface developed for the model should be very useful to researchers and in industry for designing the thermo-mechanical treatment of titanium alloys.

Dental Implant 금속재료의 성분차이에 따른 세포독성에 관한 연구 (A STUDY ON CYTOTOXICITY OF THE NEW TITANIUM ALLOYS FOR DENTAL IMPLANT MATERIAL)

  • 김태인;한준현;이인석;이규환;신명철;최부병
    • 대한치과보철학회지
    • /
    • 제34권4호
    • /
    • pp.675-686
    • /
    • 1996
  • Today, dental implants are an acceptable alternative, capable of providing bone-anchored fixed prostheses for improved quality of life and self esteem for many patients. Research advances in dental implantology have led to the development of several different types of materials, and it is anticipated that continued research will likewise lead to advanced dental implant materials. Currently used pure titanium has relatively low hardness and strength which possibly limits its ability to resist the functional loads as a dental implant. Ti-6Al-4V also has potential problems such as corrosion resistance, bone biocompatibility etc. The carefully selected Zr, Nb, Ta, Pd, In constituents could improve mechanical strength, corrosion resistance, and biocompatibility compared to that of currently used implant metals. On the basis of the totality of the data from our study, it can be concluded that new titanium alloys containing Zr, Nb, Ta, Pd, In are able to provide improved mechanical properties, corrosion resistance and biocompatibility to warrant further investigation of it's potential as new biomaterials for dental implants.

  • PDF

가공열처리에 의한 고강도 Al-Cu-Li-Ag-Mg-Zr 합금의 기계적 성질 개선 (Improvement of Mechanical Properities in Al-Cu-Li-Ag-Mg-Zr Alloys by Thermomechanical Treatement)

  • 유정희;남궁일;이오연;김동건
    • 열처리공학회지
    • /
    • 제5권2호
    • /
    • pp.103-110
    • /
    • 1992
  • This study is aimed to investigate the effect of various thermomechanical treatments($T_6$, $T_8$ and ITMT) on the microstructure and mechanical properties of an Al-Cu-Li-Ag-Mg-Zr alloy (Weldalite 049) which has been known to strong natural aging response, good weldablity and high strength in $T_6$ sand $T_8$ temper. This experiment was performed by means of differential scaning calorimetry, tensile test, optical and transmission electron microscopy. The tensile strength in the peak aged condition shows 620, 650 MPa in $T_6$ and $T_8$(40% cold work), respectively. Also, The tensile strength is increased with cold working in $T_8$ but decreased at 60% cold working. However, the tensile strength of the intermediate thermomechanical treated speciman(ITMT) is lower than that of $T_6$ temper about 20% but the elongation is higher than two times. It might be predicted that the ITMT is effective processing to improve the toughness of this alloy. In $T_6$, $T_8$ and ITMT, the major strengthening phase is $T_1(Al_2CuLi)$ phases. and the fine $T_1$ phase which are homogeneously precipited in matrix was observed much more in $T_8$ than $T_6$ and ITMT.

  • PDF

스파크플라즈마 소결에 의한 Ti-Nb-Zr-Mo-CPP 생체복합재의 기계적 성질 및 생체적합성 (Mechanical Properties and Biocompatibility of Ti-Nb-Zr-Mo-CPP Biomaterial Fabricated by Spark Plasma Sintering)

  • 우기도;김상미;김동건;김대영;강동수
    • 한국재료학회지
    • /
    • 제23권2호
    • /
    • pp.135-142
    • /
    • 2013
  • The Ti-6Al-4V extra low interstitial (ELI) alloy has been widely used as an orthopedic implant material because of its excellent mechanical properties and biocompatibility. However, it still has many problems, including a high elastic modulus and toxicity of the Al and V elements. Therefore, non-toxic biomaterials with a low elastic modulus need to be developed. A high energy mechanical milling (HEMM) process is introduced to improve the effect of sintering. Rapid sintering of spark plasma sintering (SPS) under pressure was used to make an ultra fine grain of Ti-25 wt.%Nb-7 wt.%Zr-10 wt.%Mo-(10 wt.%CPP) composites with bio-attractive elements for increasing strength. These composites were fabricated by SPS at $1000^{\circ}C$ at 60 MPa using HEMM powders. During the sintering process, $CaTiO_3$, TixOy, and CaO were formed because of the reaction between Ti and CPP. The effects of CPP content on the physical and mechanical properties of the sintered Ti-Nb-Zr-Mo-CPP composites were investigated. The biocompatibility and corrosion resistance of the Ti-Nb-Zr-Mo alloys were improved by the addition of CPP.

냉각속도에 따른 Al-2.7wt%Li 합금계의 응고조직 (Solidification Structure of Al-2.7wt%Li Alloys by Cooling Rate Controlled)

  • 심동섭;최정철;조형호;권해욱
    • 한국주조공학회지
    • /
    • 제11권5호
    • /
    • pp.398-405
    • /
    • 1991
  • Al-Li alloy has a high strength with low density. Practically this alloy should use by the material which made from the rapid solidification. Therefore we examine the solidification structures of alloy with cooling rate. According to cooling rate increased, grain size and secondary dendrite arm spacing were smaller. Also grain size was further smaller by Zr added. To obtain more fine solidification structure, rapid solidification by single roll melt spinning was performed. According to higher wheel speed, cooling rate increased and cell size was smaller. Because of locally different cooling rate, different cell size was obtained in same specimen. More than cooling rate $10^6^{\circ}C$ /sec, zone A(insensible zone to corrosion)was obtained.

  • PDF

Si and Mg Coatings on the Hydroxyapatite Film Formed Ti-29Nb-xHf Alloys by Plasma Electrolyte Oxidation

  • Park, Seon-Yeong;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.152-152
    • /
    • 2017
  • Titanium and its alloys have been widely used for biomedical applications. However, the use of the Ti-6Al-4V alloy in biomaterial is then a subject of controversy because aluminum ions and vanadium oxide have potential detrimental influence on the human body due to vanadium and aluminum. Hence, recent works showed that the synthesis of new Ti-based alloys for implant application involves more biocompatible metallic alloying element,such as, Nb, Hf, Zr and Mo. In particular, Nb and Hf are one of the most effective Ti ${\beta}$-stabilizer and reducing the elastic modulus. Plasma electrolyte oxidation (PEO) is known as excellent method in the biocompatibility of biomaterial due to quickly coating time and controlled coating condition. The anodized oxide layer and diameter modulation of Ti alloys can be obtained function of improvement of cell adhesion. Silicon (Si) and magnesium (Mg) has a beneficial effect on bone. Si in particular has been found to be essential for normal bone and cartilage growth and development. In vitro studies have shown that Mg plays very important roles in essential for normal growth and metabolism of skeletal tissue in vertebrates and can be detected as minor constituents in teeth and bone. Therefore, in this study, Si and Mg coatings on the hydroxyapatite film formed Ti-29Nb-xHf alloys by plasma electrolyte oxidation has been investigated using several experimental techniques. Ti-29Nb-xHf (x= 0, 3, 7 and 15wt%, mass fraction) alloys were prepared Ti-29Nb-xHf alloys of containing Hf up from 0 wt% to 15 wt% were melted by using a vacuum furnace. Ti-29Nb-xHf alloys were homogenized for 2 hr at $1050^{\circ}C$. The electrolyte was Si and Mg ions containing calcium acetate monohydrate + calcium glycerophosphate at room temperature. The microstructure, phase and composition of Si and Mg coated oxide surface of Ti-29Nb-xHf alloys were examined by FE-SEM, EDS, and XRD.

  • PDF

Powder Metallurgy of Nanostructured High Strength Materials

  • Eckert, J.;Scudino, S.;Yu, P.;Duhamel, C.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.364-365
    • /
    • 2006
  • Nanostructured or partially amorphous Al-and Zr-based alloys are attractive candidates for advanced high-strength lightweight materials. Such alloys can be prepared by quenching from the melt or by powder metallurgy using mechanical attrition techniques. This work focuses on mechanically attrited powders and their consolidation into bulk specimens. Selected examples of mechanical deformation behavior are presented, revealing that the properties can be tuned within a wide range of strength and ductility as a function of size and volume fraction of the different phases.

  • PDF

Microstructure and Mechanical Properties of Ti-35Nb-7Zr-XCPP Biomaterials Fabricated by Rapid Sintering

  • Woo, Kee-Do;Park, Sang-Hoon;Kim, Ji-Young;Kim, Sang-Mi;Lee, Min-Ho
    • 한국재료학회지
    • /
    • 제22권3호
    • /
    • pp.150-154
    • /
    • 2012
  • Ti-6Al-4V ELI (Extra Low Interstitial) alloy have been widely used as alternative to bone due to its excellent biocompatibility, although it still has many problems such as high elastic modulus and toxicity. Therefore, biomaterials with low elastic modulus and non toxic characteristics have to be developed. A novel ${\beta}$ Ti-35wt%Nb-7wt%Zr-Calcium pyrophosphate (CPP) composite that is a biocompatible alloy without elemental Al or V was fabricated by spark plasma sintering (SPS) at $1000^{\circ}C$ under 70 MPa using high energy mechanical milled (HEMM) powder. The microstructure and phases of the milled powders and the sintered specimens were studied using SEM, TEM, and XRD. Ti-35wt%Nb-7wt%Zr alloy was transformed from ${\alpha}$ phase to ${\beta}$ phase in the 4h-milled powder by sintering. The sintered specimen using the 4h-milled powder showed that all the elements were distributed very homogeneously and had higher density and hardness. ${\beta}$ Ti alloy-CPP composite, which has nanometer particles, was fabricated by SPS using HEMMed powder. During the sintering process, $CaTiO_3$, TixOy, and CaO were formed because of the reaction between Ti and CPP. The Vickers hardness of the composites increases with the increase of the milling time and the addition of CPP. The biocompatibility of the Ti-Nb-Zr alloys was improved by addition of CPP.

Morphology of RF-sputtered Mn-Coatings for Ti-29Nb-xHf Alloys after Micro-Pore Form by PEO

  • Park, Min-Gyu;Park, Seon-Yeong;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.197-197
    • /
    • 2016
  • Commercially pure titanium (CP Ti) and Ti-6Al-4V alloys have been widely used for biomedical applications. However, the use of the Ti-6Al-4V alloy in biomaterial is then a subject of controversy because aluminum ions and vanadium oxide have potential detrimental influence on the human body due to vanadium and aluminum. Hence, recent works showed that the synthesis of new Ti-based alloys for implant application involves more biocompatible metallic alloying element, such as, Nb, Hf, Zr and Mo. In particular, Nb and Hf are one of the most effective Ti ${\beta}-stabilizer$ and reducing the elastic modulus. Plasma electrolyte oxidation (PEO) is known as excellent method in the biocompatibility of biomaterial due to quickly coating time and controlled coating condition. The anodized oxide layer and diameter modulation of Ti alloys can be obtained function of improvement of cell adhesion. Manganese(Mn) plays very important roles in essential for normal growth and metabolism of skeletal tissue in vertebrates and can be detected as minor constituents in teeth and bone. Radio frequency(RF) magnetron sputtering in the various PVD methods has high deposition rates, high-purity films, extremely high adhesion of films, and excellent uniform layers for depositing a wide range of materials, including metals, alloys and ceramics like a hydroxyapatite. The aim of this study is to research the Mn coatings on the micro-pore formed Ti-29Nb-xHf alloys by RF-magnetron sputtering for dental applications. Ti-29Nb-xHf (x= 0, 3, 7 and 15wt%, mass fraction) alloys were prepared Ti-29Nb-xHf alloys of containing Hf up from 0 wt% to 15 wt% were melted by using a vacuum furnace. Ti-29Nb-xHf alloys were homogenized for 2 hr at $1050^{\circ}C$. Each alloy was anodized in solution containing typically 0.15 M calcium acetate monohydrate + 0.02 M calcium glycerophosphate at room temperature. A direct current power source was used for the process of anodization. Anodized alloys was prepared using 270V~300V anodization voltage at room. Mn coatings was produced by RF-magnetron sputtering system. RF power of 100W was applied to the target for 1h at room temperature. The microstructure, phase and composition of Mn coated oxide surface of Ti-29Nb-xHf alloys were examined by FE-SEM, EDS, and XRD.

  • PDF