• 제목/요약/키워드: Zr-Al alloys

검색결과 124건 처리시간 0.018초

급속냉각한 Al-5Cr-2Zr 합금의 시효경화에 미치는 기계적 합금화 처리효과 (Effects of Mechanical Alloying Treatment on Age Hardening Behavior of Rapidly Solidified Al-5Cr-2Zr Alloy)

  • 김완철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권5호
    • /
    • pp.29-35
    • /
    • 1994
  • The microstructual refinement process of Al-5Cr-2Zr alloys mechanical alloying 30h can be divided in five stages ; initial stage, welding predomminance stage, spherical partical formation stage, convolution welding predominance stage, and steady state. The rate of structural of aluminium splats was roughly logarithmic with processing time ; ${\in}$=k/0.78 ln(1+0.0028t). The age hardening in rapidly solidified Al-5Cr-2Zr alloys is ascribed to the coherency and dispersion hardening. Coherency hardening is occurred by matastable cubic Al3Zr precipitates in Al-Cr-Zr alloys. Dispersion hardening after mechanical alloying is attributed to the finely-dispersed $Al_2O_3$ and $Al_4C_3$ in Al-5Cr-2Zr alloys.

  • PDF

커넥터용 Cu-Ni-Mn-Sn계 합금의 가공성에 미치는 Zr 첨가효과 (The effects of Zr on the mechanical workability in Cu-Ni-Mn-Sn connector alloys)

  • 한승전;공만식;김상식;김창주
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 영호남학술대회 논문집
    • /
    • pp.246-249
    • /
    • 2000
  • The effects of Zr on the mechanical workability and tensile strength of Cu-Ni-Mn-Sn-Al alloys have been investigated and the following results were obtained. The mechanical workability of Cu-Ni-Mn-Sn-Al alloys are increased with addition of Zr. And the surface cracks of specimen were not produced in Zr added Alloys. Especially in condition of hot-worked beyond the 90% working ratio, Zr contained specimen showed intra-granule crack propagation but Zr-free specimen showed inter-granule mode. The tensile strength have maximum value in 0.05% Zr contained alloy. The aging mechanism of Cu-Ni-Mn-Sn-Al alloys were varied by Zr addition.

  • PDF

급냉응고 및 기계적 합금화된 Al-Ti계 합금의 기계적 성질 (Mechanical Properties of Al-Ti Base Alloys Processed Via Rapid Solidification and Mechanical Alloying)

  • 최철진
    • 한국분말재료학회지
    • /
    • 제2권1호
    • /
    • pp.36-43
    • /
    • 1995
  • Rapidly solidified and mechanically alloyed Al-Ti base alloys were prepared by gas atomization and attritor milling separately. The gas atomized and the mechanically alloyed powders were consolidated after preheating at $450^{\circ}C$, and then heat treated isochronally for 1 hour to observe the microstructures and to investigate the mechanical properties. Stable phases of precipitates in the Al-Ti-Si and the Al-Ti-Zr alloys were identified as DO22-$(Al,Si)_3Ti$ and $Do_{23}-Al_3(Ti, Zr)$ each. Among the alloys, the mechanically alloyed Al-l0Ti-2Si alloy showed superior thermal stability and mechanical properties at elevated temperature. The additions of third elements, such as Si and Zr, to Al-Ti alloys seemed to improve the mechnical properties remarkably by stabilizing the microstructure and the precipitate phases in the consolidated alloys.

  • PDF

기계적 합금화한 Al-8wt.%(Ti+V+Zr) 4원계 합금의 열적 안정성에 관한 연구 (The Thermal Stability of Mechanically Alloyed Quaternary Al-8wt.%(Ti+V+Zr) Alloys)

  • 김주영
    • 한국분말재료학회지
    • /
    • 제2권3호
    • /
    • pp.247-254
    • /
    • 1995
  • The theoretical optimum quaternary composition for improving the thermal stability of Al-Ti alloy was recently proposed. On the basis of the suggestion, quaternary Al-Ti-V-Zr alloy powders corresponding to the optimum compositions, one of which belongs to the region of the smallest lattice misfit between the matrix and the precipitates and the other belongs to the region of the smallest rate constant of coarsening, were prepared by mechanical alloying and the powders were vacuum-hot-pressed at $430^{\circ}C$ under the pressure of 800 MPa. The thermal stability of the specimens was evaluated by hardness testing after isothermal aging up to 400 hrs at various temperatures. The decrease of hardness of Al-Ti-V-Zr alloys was smaller than that of Al-Ti alloys. It was considered to be due to the formation of $Al_3Zr$ type and$Al_3Ti$ type quaternary precipitates having smaller lattice misfit than $Al_3Ti$ and the increase of volume fraction of All0v during the isothermal aging. The quaternary Al-Ti-V-Zr alloys corresponding to the smallest lattice misfit showed the most improved thermal stablilty and it was mainly considered to be due to the formation of All0v.

  • PDF

Zr을 과잉 첨가한 MmNi4.5Al0.5Zrx(X=0.0-0.2) 합금의 수소화 반응특성에 대한 연구 (A Study on the Hydrogenation Properties of MmNi4.5Al0.5Zrx(X=0.0-0.2) Alloys Containing the Zr by Excess)

  • 나영상;이재영
    • 한국수소및신에너지학회논문집
    • /
    • 제4권1호
    • /
    • pp.31-39
    • /
    • 1993
  • In order to improve the hydrogen storage capacity and the activation property of the $MmNi_{4.5}Al_{0.5}$ alloy, the multiphase alloy system are prepared by adding the excess Zr in $MmNi_{4.5}Al_{0.5}$ alloy. It is estimated from the X-ray diffraction pattern and the energy dispersive X-ray analysis that the 2nd phases in $MmNi_{4.5}Al_{0.5}Zr_x$ alloys are $ZrNi_3$, ${\beta}$-Zr. Their morphology is also examined by the scanning electron microscope, and it shows the needle-like precipitation. As the Zr contents increase, the activation time and the plateau pressure decrease, sloping of the plateau pressure increase. Amount of the 2nd phases increase with Zr contents in $MmNi_44.5Al_{0.5}Zr_x$ alloys. The $MmNi_44.5Al_{0.5}Zr_{0.05}$ alloy, which shows the maximum storage capacity and the strong resistance to intrinsic degradation, is considered as a proper alloy for hydrogen storage.

  • PDF

Fe과 Si의 첨가가 주조용 고강도 Al-Cu-Mn-Ti-Zr-Cd 합금의 시효경화거동에 미치는 영향 (Effects of Fe and Si Additions on the Ageing Behaviors for High Strength Al-Cu-Mn-Ti-Zr-Cd Casting Alloys)

  • 김철효;이정무;김경현;김인배
    • 한국주조공학회지
    • /
    • 제24권1호
    • /
    • pp.45-51
    • /
    • 2004
  • Fe and Si are common impurity elements in the aluminum alloys. In this investigation, the effects of the addition of Fe and Si on the age-hardening behaviors of the Al-Cu-Mn-Ti-Zr-Cd casting alloys were examined through hardness measurements, calorimetric techniques and observation of the transmission electron microscopy. The addition of Fe depresses the formation of GPII and ${\theta}'$, and thus retards the peak aging time and reduces the peak hardness of the Al-Cu-Mn-Ti-Zr-Cd alloys. On the contrary, the addition of Si accelerates the formation of GPII and ${\theta}'$ and thus accelerates age-hardening behaviors of the Al-Cu-Mn-Ti-Zr-Cd alloys.

Investigation of Interface Reaction between TiAl Alloys and Mold Materials

  • 김명균;김영직
    • 소성∙가공
    • /
    • 제8권3호
    • /
    • pp.289-289
    • /
    • 1999
  • This paper describes the investment casting of TiAl alloys. The effects of mold material and mold preheating temperature for the investment casting of TiAl on metal-mold interfacial reaction were investigated by means of optical micrography, hardness profiles and an electron probe microanalyzer. The mold materials examined were colloidal silica bonded ZrO₂, ZrSiO₄, A1₂O₃and CaO stabilized ZrO₂. When compared with conventional titanium a1loy, the high aluminum concentration of TiAl alloys helps to lower their reactivity in the molten state. The A1₂O₃mold is a promising mold material for the investment casting of TiAl in terms of the thermal stability, formability and cost. Special attention need to be paid to thermal stability and mold preheating when developing the investment calling of TiAl alloys.

알루미늄 합금에서 Zr첨가가 TiB2의 변형과 결정립크기에 미치는 영향 (Influence of Zr Addition on TiB2 Modification and Grain Size in Aluminium Alloys)

  • 강원덕;박현균
    • 대한금속재료학회지
    • /
    • 제49권8호
    • /
    • pp.619-627
    • /
    • 2011
  • The poisoning effect of Zr in aluminum alloys was investigated by analyzing the filtered cakes of aluminum alloy melt taken with the $Prefil^{(R)}$ footprinter through a variety of analytic instruments, SEM/EDX, Auger, and TEM. Experimental results indicated that the morphology and chemical composition of the aluminum alloys were not modified with the addition of Zr, which is to previous belief that Zr poisoning is caused by modification of $(Ti_{1-x}Zr_x)Al_3$. On the other hand, $TiAl_3$ surroundig $TiB_2$ particles was modified and its lattice parameter was more mismatched by increasing Zr content, leading to less nucleation rate. This is also supported by the observation that the poisoning effect is reduced when Ti is added, resulting in a lower content ratio of Zr to Ti. These results suggest that extra Ti should be added to eliminate the poisoning effect of Zr in aluminum alloys containing Zr.

TiAl 합금의 CaO 도가니 유도용융 및 정밀주조 (CaO Crucible Induction Melting and Investment Casting of TiAl Alloys)

  • 김명균;성시영;김영직
    • 한국주조공학회지
    • /
    • 제22권2호
    • /
    • pp.75-81
    • /
    • 2002
  • The main objectives were to investigate the suitability of CaO crucible for melting TiAl alloys and to develop investment mold for investment casting of TiAl alloys. TiAl alloy specimen were prepared by plasma arc furnace under argon atmosphere. After melting of TiAl alloy using CaO crucible, the results showed that there is little contamination of oxygen in the TiAl bulk. Conventional vacuum induction furnaces can be readily adaptable to produce cast parts of TiAl without high skilled techniques. The determination of optical metallography and microhardness profiles in investment cast TiAl alloy rods has allowed the gradation of the relative thermal stability of the oxides examined. The molds used for the present study were $ZrO_2$, $Al_2O_3$, CaO stabilized $ZrO_2$ and $ZrSiO_4$. Even although high temperature of mold preheating, $Al_2O_3$ mold is a promising mold material for investment casting of TiAl alloys in terms of thermal stability, cost and handling strength. It is important to take thermal stability and preheating temperature of mold into consideration for investment casting of TiAl alloys.

나노 결정립과 금속간화합물상에 의해 강화된 고온, 고강도 Al-Cr-Zr 합금개발 및 특성평가 (I) (Evaluation of Elevated Temperature Strength of Al-Cr-Zr Alloys Strengthened by Nanostructured Crystallines and Intermetallic Compounds (I))

  • 양상선
    • 한국분말재료학회지
    • /
    • 제6권1호
    • /
    • pp.49-55
    • /
    • 1999
  • Al-Cr-Zr nanocomposite metal powders were prepared by mechnical alloying (MA) in order to develop aircraft structure materials with lighter weight and lower cost than the conventional Ti and Ni alloys. The morphological changes and microstrutural evolution of Al-6wt.%Cr-3wt.%Zr nanocomposite metal powders during MA were investigated by SEM, XRD and TEM. The approximately 50$\mu$m sized Al-Cr-Zr nanocomposite metal powders has been formed after 20 h of MA. The individual X-ray diffraction peaks of Al, Cr and Zr were broadened and peak intensitied were decreased as a function of MA time. The observed Al crystallite size by TEM was in the range of 20 nm, which is a simliar value calculated by Scherrer equation. The microhardness of Al-Cr-Zr nanocomposite metal powders increases alomost linearly with increase of the processing time, reaching a saturation hardness value of 127 kg/$mm^2$ after 20 h of processing. The intermetallic compound phase of $Al_3Zr_4$ in the matrix was identifed by XRD and TEM.

  • PDF