• Title/Summary/Keyword: Zr-2.5%Nb

Search Result 349, Processing Time 0.05 seconds

열처리가 Zr-2.5Nb압력관 재료의 지체균열전파 특성에 미치는 영향

  • 김인섭;오제용;김영석;국일현
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.765-770
    • /
    • 1995
  • 지체균열전파(DHC)는 중수로 압력관의 수명에 근 영향을 미치는 중요한 현상 중의 하나이다. 본 연구에서는 열처리를 통하여 압력관 재료인 Zr-2,5Nb의 기계적 성질, 집합조직을 변화시켜 각 인자들이 DHC에 미치는 영향을 조사하였다. 그 결과 지체균열전파속도(DHCV)는 항복강도와 경도와 비례한다는 것과 유사한 미세구조와 집합조직을 갖는 Zr-2.5Nb의 경우 항복강도와 Puls의 모델을 이용하여 지체균열전파속도(DHCV)를 예측할 수 있었다. 그리고 secondary cracking이 annealing한 시편들에서는 관찰되었으나 $\beta$열처리 후 급냉한 시편에서는 관찰되지 않았다. 이것의 수소화물 형상의 차이에 의한 것으로 생각된다.

  • PDF

Microstructure and Mechanical Property of Irradiated Zr-2.5Nb Pressure Tube in Wolsong Unit-1

  • 김영숙;안상복;오동준;김성수;정용무
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.241-241
    • /
    • 1999
  • With the aim of assessing the degradation of Zr-2.5Nb pressure tubes operating in the Wolsong unit-1 nuclear power plant, characterization tests are being conducted on irradiated Zr-2.5Nb tubes removed after 10-year operation. The examined tube had been exposed to temperatures ranging from 264 to 306℃ and a neutron fluence of 8.9×$10^{21}$ n/cm²(E>1 MeV) at the maximum. Tensile tests were carried out at temperatures ranging from RT to 300℃. The density of a-type and c-type dislocations was examined on the irradiated Zr-2.5Nb tube using a transmission electron microscope. Neutron irradiation up to 8.9×$10^{21}$ n/cm²(E>1 MeV) yielded an increase in a-type dislocation density of the Zr-2.5Nb pressure tube to 7.5×$10^{14} m^{-2}$, which was highest at the inlet of the tube exposed to the low temperature of 275℃. In contrast, the c-component dislocation density did not change with irradiation, keeping an initial dislocation density of 0.8×$10^{14} m^{-2}$ over the whole length of the tube. As expected, the neutron irradiation increased mechanical strength by about 17-26% in the transverse direction and by 34-39% in the longitudinal direction compared to that of the unirradiated tube at 300℃. The change in the mechanical properties with irradiation is discussed in association with the microstructural change as a function of temperature and neutron fluence.