• 제목/요약/키워드: Zr Coating

검색결과 330건 처리시간 0.019초

졸-겔 세라믹 코팅에 의한 스테인레스강의 내산화 및 내식성 향상에 관한 연구;(I) 지르코니아 졸의 합성 및 박막의 제조 (A Study on the Improvement of Oxidation and Corrosion Resistance of Stainless Steel by Sol-Gel Ceramic Coating; (I) Synthesis of Zirconia Sol and Fabrication of Its Thin Film)

  • 김병호;홍권;신동원
    • 한국세라믹학회지
    • /
    • 제31권9호
    • /
    • pp.1060-1068
    • /
    • 1994
  • Stable zirconia sol was prepared from zirconium butoxide Zr(OC4O9)4 as a precursor and ethylacetoacetate(EAcAc) or diethylene glycol(DEG) as a chelating agent under ambient agent under ambient atmosphere by Sol-Gel process. The sythesized sol was coated on 304 stainless steel substrate by dip coating, thereafter zirconia film could be obtained by heat-treatment at $600^{\circ}C$. The characteristics of coating film were determined by FT-IR, XRD, and ellipsometion peak represented Zr-O-Zr bonding of tetragonal phase was shown at 470cm-1. Crystallization of zirconia gel and film from amorphous state to tetragonal phase started at 40$0^{\circ}C$, and then transformed into monoclinic phase around $700^{\circ}C$. Zirconia film coated on 304 stainless steel substrate showed relatively low porosity of 16% when it was coated with 0.4M zirconia sol and thereafter heat-treated at 80$0^{\circ}C$ and the film was densified continuously up to 90$0^{\circ}C$. The zirconia film of 10 nm thick acted as a protective layer against oxidation up to $700^{\circ}C$.

  • PDF

은이 피복된 단심 Bi(2223) 초전도 선재에 대한 SrZrO3 코팅층의 접착강도 특성 (Bond Strength of SrZrO3 Coatings on Ag Sheathed Bi(2223) Mono-core Tape)

  • 이세종;예경환;이득용;송요승
    • 한국세라믹학회지
    • /
    • 제39권10호
    • /
    • pp.1001-1006
    • /
    • 2002
  • 은이 피복된 Bi(2223) 단심 초전도 선재에 절연층으로 $SrZrO_3$ 피막을 졸-겔과 딥-코팅법으로 제조하여 $SrZrO_3$ 코팅층과 초전도 선재간 접착력 특성을 조사하였다. 실험인자로는 출발원료의 몰비, 유기화합물 첨가량, 건조온도 및 시간, 열처리 온도 및 시간이었으며 다구찌법의 망대특성과 $L_18(2^1{\times}3^7)$ 직교배열표를 이용하여 코팅층의 최적조건인 인자와 수준 조합의 최적화를 접착강도를 측정하여 분석하였다. 최적의 접착 특성을 가진 코팅조건은 Sr/Zr의 몰비가 0.3/0.7, 유기화합물 첨가량이 5wt%, 건조온도 및 시간은 160${\circ}C$ 10분, 열처리 온도 및 시간은 500${\circ}C$ 20분이었다. 분산분석 결과, 유의수준이 ${\alpha}$=0.1인 통계적으로 90% 신뢰공정이었다.

서스펜션 플라즈마 용사법으로 제조한 La2Zr2O7, (La0.5Gd0.5)2Zr2O7, Gd2Zr2O7 열차폐코팅의 상형성과 열전도 특성 (Phase Formation and Thermal Diffusivity of Thermal Barrier Coatings of La2Zr2O7, (La0.5Gd0.5)2Zr2O7, Gd2Zr2O7 Fabricated by Suspension Plasma Spray)

  • 김선주;이성민;오윤석;김형태;장병국;김성원
    • 한국표면공학회지
    • /
    • 제49권6호
    • /
    • pp.604-611
    • /
    • 2016
  • In order to comply with demand for high efficient gas turbines operating at higher temperatures, considerable amounts of research efforts have been performed with searching for the next-generation thermal barrier coatings (TBCs) with respect to coating materials as well as processing methods. In this study, thermal barrier coatings in the $(La_{1-x}Gd_x)_2Zr_2O_7$ system, which is one of the most versatile materials replacing yttria-stabilized zirconia (YSZ), are fabricated by suspension plasma spray with suspension made of synthesized powders via solidstate reaction. Dense, $100{\sim}400{\mu}m$ thick coatings of fluorite-phase zirconate with moderate amount of segmented microstructures are obtained by using suspension plasma spray. Phase formation and thermal diffusivity are characterized with coating compositions. The feasibility of $(La_{1-x}Gd_x)_2Zr_2O_7$ coatings for TBC applications is also discussed.

고체산화물 연료전지용 $YSZ/La_0.85S_r0.15MnO_3$계 복합전극의 개발 (Development of $YSZ/La_0.85S_r0.15MnO_3$ Composite Electrodes for Solid Oxide Fuel Cells)

  • 윤성필;현상훈;김승구;남석우;홍성안
    • 한국세라믹학회지
    • /
    • 제36권9호
    • /
    • pp.982-990
    • /
    • 1999
  • YSZ/LSM composite cathode was fabricated by dip-coating of YSZ sol on the internal pore surface of a LSM cathode followed by sintering at low temperature (800-100$0^{\circ}C$) The YSZ coating significantly increased the TPB(Triple Phase Boundary) where the gas the electrode and the electrolyte were in contact with each other. Sinter the formation of resistive materials such as La2Zr2O7 or SrZrO3 was prevented due to the low processing temperature and TPB was increased due to the YSZ film coating the electrode resistance (Rel) was reduced about 100 times compared to non-modified cathode. From the analysis of a.c impedance it was shown that microstructural change of the cathode caused by YSZ film coating affected the oxygen reduction reaction. In the case of non-modified cathode the RDS (rate determining step) was electrode reactions rather than mass transfer or the oxygen gas diffusion in the experimental conditions employed in this study ($600^{\circ}C$-100$0^{\circ}C$ and 0,01-1 atm of Po2) for the YSZ film coated cathode however the RDS involved the oxygen diffusion through micropores of YSZ film at high temperature of 950-100$0^{\circ}C$ and low oxygen partial pressure of 0.01-0.03 atm.

  • PDF

High Temperature Oxidation Behavior of Plasma Sprayed $ZrO_2$ Having Functionally Gradient Thermal Barrier Coating

  • Park, Cha-Hwan;Lee, Won-Jae;Cho, Kyung-Mox;Park, Ik-Min
    • Corrosion Science and Technology
    • /
    • 제2권3호
    • /
    • pp.155-160
    • /
    • 2003
  • Plasma spraying technique was used to fabricate functionally graded coating (FGC) of NiCrAIY/YSZ 8wt%$Y_2O_3-ZrO_2$ on a Co-base superalloy (HAYNES 188) substrate. Six layers were coated on the substrate for building up compositionally graded architecture. Conventional thermal barrier coating (TBC) of NiCrAIY/SZ with sharp interface was also fabricated. As-coated FGC and TBC samples were exposed at the temperature of $1100^{\circ}C$ for 10, 50, 100 hours in air. Microstructural change of thermally exposed samples was examined. Pores and microcracks were formed in YSZ layer due to evolution of thermal internal stress at high temperature. The amount of pores and microcracks in YSZ layer were increased with increasing exposure time at high temperature. High temperature oxidation of coatings occurred mainly at the NiCrAIY/YSZ interface. In comparison with the case of TBC. the increased area of the NiCrAIY/YSZ interface in FGC is likely to attribute to forming the higher amount of oxides.

조직생검용 Needle의 세라믹 코팅에 관한 연구 (A Study on the Ceramic Coating of Biopsy Needle)

  • 조성만;정협재;김만태;이경업
    • 한국정밀공학회지
    • /
    • 제26권9호
    • /
    • pp.121-126
    • /
    • 2009
  • Stainless steel 316L (STS 316L) is widely used as a material of biopsy needle. However it has a side effect that tissue can be damaged by electrochemical operation between tissue and STS 316L. Many studies have been made on the ceramic coating of biopsy needle to reduce the side effect. In this study, STS 316L was coated with three bioceramics, $Al_2O_3$, $SiO_2$ and $ZrO_2$ using a RF magnetron sputtering method. The effects of ceramic coating on the electrical conductivity and coating strength of ceramic-coated STS 316L were investigated. The results showed that the electrical conductivity of ceramic-coated STS 316L was much lower than that of uncoated STS 316L. The coating strength of $ZrO_2$-coated STS 316L was 30% and 70% higher, respectively than those of $Al_2O_3$-coated STS 316L and $SiO_2_3$-coated STS 316L.

공정 개선에 따른 사고저항성 CrAl 코팅 피복관의 내마모성 향상 (Improved Coating Process for Enhanced Wear Resistance of CrAl Coated Claddings for Accident Tolerant Fuel)

  • 김성은;이영호;김대호;김현길
    • Tribology and Lubricants
    • /
    • 제38권4호
    • /
    • pp.136-142
    • /
    • 2022
  • This paper investigates the enhanced wear performance of a CrAl coated accident tolerant fuel (ATF) cladding. In the wake of the Fukushima accident, extensive research on ATF with respect to improving the oxidation resistance of cladding materials is ongoing. Since coated Zr claddings can be applied without major changes to the criteria for reactor core design, many researchers are studying coatings for claddings. To improve the quality of the CrAl coating layer, optimization of the manufacturing process is imperative. This study employs arc ion plating to obtain improved CrAl coated claddings using CrAl binary alloy targets through an improved coating method. Surface roughness and adhesion are improved, and droplets are reduced. Furthermore, the coated layer has a dense and fine microstructure. In scratch tests, all the tested CrAl coated claddings exhibit a superior resistance compared to the Zr cladding. In a fretting wear test, the wear volume of the CrAl coated claddings is smaller compared to the Zr cladding. Furthermore, the coated cladding manufactured through the improved process exhibits better wear resistance than other CrAl coated claddings. Based on these results, we suggest that fine microstructure is attributed to a mechanically and microstructurally robust CrAl coating layer, which enhances wear resistance.

경사기능성 지르코니아 용사피복층의 열 및 기계적특성 (Thermal and Mechanical Characteristics of Functionally Graded ZrO$_2$ Thermal Spray Coating)

  • 오동현
    • 한국표면공학회지
    • /
    • 제31권2호
    • /
    • pp.91-100
    • /
    • 1998
  • NiCrAlY/YSZ(8wt%$Y_2O_3-ZrO_2$) functionally graded thermal barrier coating (FGC) layers on a Co-base superalloy (HAYNESS 188) substrate were fabstrate were fabicated using Ar shielded single torch air plasma spraying method. Functional grading with the stepwise compositional change throughout layer thickness. Microstructural observation trvealed a successful fabrication of NiCrAlY/YSZ FGC. From the results of the curvature measurement, adhesive strength measurement and thermal shock test for the FGC, it was concluded that the optimum conditions of functionally graded coating layer thinkness and compositional pattern exit to enhance the properties of FGC, which is closely related to the internal residual stess distribution witin it.

  • PDF