• Title/Summary/Keyword: Zr Alloys

검색결과 430건 처리시간 0.02초

Hardness and Microstructures of Ti-Zr-(Cu) based Alloys for Dental Castings (치과주조용 Ti-Zr-(Cu)계 합금의 경도 및 미세조직)

  • Joo, Kyu-Ji
    • Journal of Technologic Dentistry
    • /
    • 제27권1호
    • /
    • pp.65-71
    • /
    • 2005
  • Experimental Ti-13%Zr and Ti-13%Zr-5%Cu alloys were made in an argon-arc melting furnace. The grade 2 CP Ti was used to control. The alloys were cast into phosphate bonded $SiO_2$ investment molds using an argon-arc casting machine, and The hardness and microstructures of the castings were investigated in order to reveal their possible use for new dental casting materials and to collect useful data for alloy design. The hardness of the Ti-13%Zr-5%Cu alloy(379Hv) became higher than that of Ti-13%Zr(317Hv) alloy, and the hardness of this alloys became higher than that of CP Ti(247Hv). Increasing in the hardness of the Ti-13%Zr-5%Cu alloy was considered to be solid solution hardening as the Ti-Zr system shows a completely solid solution for both high temperature $\beta$phase and low temperature $\alpha$ phase and also the inclusion of the eutectoid structure($\alpha Ti+Ti_{2}Cu$). No martensitic structures are observed in the specimen made of CP Ti, but Ti-13%Zr and Ti-13%Zr-5%Cu alloys show a kind of martensitic structure. Ti-13%Zr-5%Cu shows the finest microstructure. From these results, it was concluded that new alloys for dental casting materials should be designed as Ti-Zr-Cu based alloys.

  • PDF

A Study on the Recrystallization Behavior of Zr-xSn Binary Alloys (Zr-xSn 이원계 합금의 재결정에 관한 연구)

  • Lee, Myeong-Ho;Gu, Jae-Song;Jeong, Yong-Hwan;Jeong, Yeon-Ho
    • Korean Journal of Materials Research
    • /
    • 제9권11호
    • /
    • pp.1123-1128
    • /
    • 1999
  • To investigate the effect of Sn on the recrystallization of Zr-based alloys. Zr-xSn (x=0.5, 0.8, 1.5, 2.0wt.%) alloys were manufactured to be the sheets through the defined manufacturing procedure. The specimens were annealed at $300^{\circ}C$ to $800^{\circ}C$ for 1 hour. The hardness, microstructure and precipitate of the alloys with the annealing temperature were investigated by using micro- knoop hardness tester, optical microscope(O/M) and transmission electron microscope(TEM), respectively. The cold-worked Zr-xSn alloys showed the typical behavior of the recovery. recrystallization, and grain growth. The recrystallization of Zr-xSn alloys occurred between $500^{\circ}C$ and $700^{\circ}C$. As the Sn content increased. the recrystallization temperature of the cold-worked alloys increased but their grain sizes after recrystallization decreased. It is suggested that the recrystallization of the cold- worked Zr alloys be occurred by the subgrain coalescence and growth mechanism.

  • PDF

The effects of Zr on the mechanical workability in Cu-Ni-Mn-Sn connector alloys (커넥터용 Cu-Ni-Mn-Sn계 합금의 가공성에 미치는 Zr 첨가효과)

  • Han, Seung-Zeon;Kong, Man-Shik;Kim, Sang-Shik;Kim, Chang-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2000년도 영호남학술대회 논문집
    • /
    • pp.246-249
    • /
    • 2000
  • The effects of Zr on the mechanical workability and tensile strength of Cu-Ni-Mn-Sn-Al alloys have been investigated and the following results were obtained. The mechanical workability of Cu-Ni-Mn-Sn-Al alloys are increased with addition of Zr. And the surface cracks of specimen were not produced in Zr added Alloys. Especially in condition of hot-worked beyond the 90% working ratio, Zr contained specimen showed intra-granule crack propagation but Zr-free specimen showed inter-granule mode. The tensile strength have maximum value in 0.05% Zr contained alloy. The aging mechanism of Cu-Ni-Mn-Sn-Al alloys were varied by Zr addition.

  • PDF

Effects of HA/TiN Coating on the Electrochemical Characteristics of Ti-Ta-Zr Alloys (Ti-Ta-Zr합금의 전기화학적 특성에 미치는 HA/TiN 코팅의 영향)

  • Oh, Mi-Young;Kim, Won-Gi;Choe, Han-Cheol
    • Korean Journal of Metals and Materials
    • /
    • 제46권10호
    • /
    • pp.691-699
    • /
    • 2008
  • Electrochemical characteristics of Ti-30Ta-xZr alloys coated with HA/TiN by using magnetron sputtering method were studied. The Ti-30Ta containing Zr(3, 7, 10 and 15wt%) were 10 times melted to improve chemical homogeneity by using a vacuum furnace and then homogenized for 24hrs at $1000^{\circ}C$. The specimens were cut and polished for corrosion test and coating, and then coated with HA/TiN, respectively, by using DC and RF-magnetron sputtering method. The analyses of coated surface and coated layer were carried out by using optical microscope(OM), field emission scanning electron microscope(FE-SEM) and X-ray diffractometer(XRD). The electrochemical characteristics were examined using potentiodynamic (-1,500 mV~ + 2,000 mV) and A.C. impedance spectroscopy(100 kHz ~ 10 mHz) in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The microstructure of homogenized Ti-30Ta-xZr alloys showed needle-like structure. In case of homogenized Ti-30Ta-xZr alloys, a-peak was increased with increasing Zr content. The thickness of TiN and HA coated layer showed 400 nm and 100 nm, respectively. The corrosion resistance of HA/TiN-coated Ti-30Ta-xZr alloys were higher than that of the non-coated Ti-30TaxZr alloys, whic hindicate better protective effect. The polarization resistance($R_p$) value of HA/TiN coated Ti-30Ta-xZr alloys showed $8.40{\times}10^5{\Omega}cm^2$ which was higher than that of non-coated Ti-30Ta-xZr alloys.

A Study on the Recrystallization Behavior and Microstructure of Zr, Zircaloy-4 and Zr-Nb Alloys (Zr, Zircaloy-4, Zr-Nb 합금의 미세조직 및 재결정 거동에 관한 연구)

  • Lee, Myeong-Ho;Choe, Byeong-Gwon;Baek, Jong-Hyeok;Jeong, Yong-Hwan
    • Korean Journal of Materials Research
    • /
    • 제10권6호
    • /
    • pp.422-429
    • /
    • 2000
  • To investigate the effect of annealing temperature and time on the recrystallization behavior and microstructure of Zr-based alloys, the specimens of Zr-0.8Sn-0.4Nb-0.4Fe-0.2Cu, Zr-1Nb, Zircaloy-4, and unalloyed Zr were cold-worked and annealed at 400, 500, 600, 700, 800, $900^{\circ}C$ for 30 to 5000 minutes. The hardness, microstructure and precipitate of the specimens were investigated by using micro-hardness tester, optical microscope and transmission electron microscope, respectively. The recrystallization of Zr-based alloys occurred between $400^{\circ}C$ and $600^{\circ}C$. As the content of alloying elements increased, the hardness and recrystallization temperature of the alloys increased though the grain sizes after recrystallization decreased. It was supposed that the hardness of Zr-based alloy with Fe or Cu increased during recovery by the formation of Fe or Cu precipitates.

  • PDF

Nanocrystallization of Cu-Based Bulk Glassy Alloys upon Annealing

  • Pengjun, Cao;Dong, Jiling;Haidong, Wu;Peigeng, Fan;Anruo, Zhou
    • Applied Microscopy
    • /
    • 제46권1호
    • /
    • pp.32-36
    • /
    • 2016
  • The Cu-based bulk glassy alloys in Cu-Zr-Ti-Ni systems were prepared by means of copper mold casting. The Cu-based bulk glassy alloys samples were tested by X-ray diffractomer (XRD), differential scanning calorimeter, scanning electron microscopy (SEM), Instron testing machine and Vickers hardness instruments. The result indicated that the prepared Cu-Zr-Ti-Ni alloys were bulk glassy alloys. The temperature interval of supercooled liquid region (${\Delta}T_x$) was about 45.48 to 70.98 K for the Cu-Zr-Ti-Ni alloy. The Vickers hardness was up to 565 HV for the $Cu_{50}Zr_{25}Ti_{15}Ni_{10}$ bulk glassy alloy. The $Cu_{50}Zr_{25}Ti_{15}Ni_{10}$ bulk glassy alloys were annealed in order to obtain nanocrystals. The results showed that the Vickers hardness was raise up to 630 HV from 565 HV. As shown in XRD results, the amorphous alloys changed to nanocrystals, which were $Cu_8Zr_3$, $Cu_3Ti_2$ and CuZr, improved the hardness. The SEM analysis showed that the compression fractured morphology of amorphous alloys was brittle fracture, and the fracture morphology after annealing was ductile fracture. This proved that annealing of amorphous to nanocrystals can improve the plasticity and toughness of amorphous alloys.

Study on Corrosion Characteristics of Zr-Sn and Zr-Nb-Sn Alloys (Zr-Sn 및 Zr-Nb-Sn 합금의 부식특성에 관한 연구)

  • Jeon, Chi-Jung;Jeong, Yong-Hwan;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • 제9권4호
    • /
    • pp.378-385
    • /
    • 1999
  • To evaluate the effect of Sn on the corrosion behavior of Zr alloys for nuclear fuel claddings, the corrosion tests on the binary Zr-xSn and the ternary Zr-0.4Nb-xSn alloys were performed in water at $360^{\circ}C$. The binary alloys containing 0.5, 0.8 and 1.5wt.% Sn showed the transition corrosion rate at 15 days. On the other hand, the binary alloy containing 2.0wt.% Sn showed a good corrosion resistance without the transition of corrosion rate up to 80 days. The corrosion rate of the ternary alloy increased with increasing Sn content. The difference of corrosion behaviors between binary and ternary alloys is considered due to the different solubility of Sn, Nb content and precipitates. The corrosions of Zr-xSn and Zr-0.4Nb-xSn alloys would be controlled by the fraction of tetragonal-$ZrO_2$and the amount of hydrogen pick-up.

  • PDF

Development of AB2-Type Zr-Mn-Ni Hydrogen-Storage Alloys for Ni-MH Secondary Battery (Ni-MH 2차전지용 AB2계 Zr-Mn-Ni 수소저장합금의 개발)

  • Kwon, IkHyun;Ahn, DongSu;Park, HyeRyoung;Song, MyoungYoup
    • Journal of Hydrogen and New Energy
    • /
    • 제12권1호
    • /
    • pp.29-38
    • /
    • 2001
  • The alloys $ZrMn_2Ni_x$ (x=0.0, 0.3, 0.6, 0.9 and 1.2) as the alloys of Zr-Mn-Ni three component system were prepared and their hydrogen-storage properties and their electrochemical properties were investigated. The C14 Laves phase formed in all the alloys $ZrMn_2Ni_x$. Among these alloys $ZrMn_2Ni_{0.6}$ was activated relatively easily(after about 11 charge-discharge cycles), and had the largest discharge capacity(max. 45mAh/g). For all the alloys Zr was dissolved most easily into the 6M KOH solution. More Mn and Ni were dissolved from the $ZrMn_2Ni_{0.6}$ alloy than from the other alloys. Due to the active charge and discharge of the $ZrMn_2Ni_{0.6}$ alloys, related to the easier activation and the larger discharge capacity, Zr, Mn and Ni in this alloy were considered to be dissolved more easily into the 6M KOH solution, compared with the other alloys.

  • PDF

Electrochemical Characteristics of Nanotubular Ti-25Nb-xZr Ternary Alloys for Dental Implant Materials

  • Byeon, In-Seop;Park, Seon-Young;Choe, Han-Cheol
    • Journal of Korean Dental Science
    • /
    • 제10권1호
    • /
    • pp.10-21
    • /
    • 2017
  • Purpose: The purpose of this study was to investigate the electrochemical characteristics of nanotubular Ti-25Nb-xZr ternary alloys for dental implant materials. Materials and Methods: Ti-25Nb-xZr alloys with different Zr contents (0, 3, 7, and 15 wt.%) were manufactured using commercially pure titanium (CP-Ti), niobium (Nb), and zirconium (Zr) (99.95 wt.% purity). The alloys were prepared by arc melting in argon (Ar) atmosphere. The Ti-25Nb-xZr alloys were homogenized in Ar atmosphere at $1,000^{\circ}C$ for 12 hours followed by quenching into ice water. The microstructure of the Ti-25Nb-xZr alloys was examined by a field emission scanning electron microscope. The phases in the alloys were identified by an X-ray diffractometer. The chemical composition of the nanotube-formed surfaces was determined by energy-dispersive X-ray spectroscopy. Self-organized $TiO_2$ was prepared by electrochemical oxidation of the samples in a $1.0M\;H_3PO_4+0.8wt.%$ NaF electrolyte. The anodization potential was 30 V and time was 1 hour by DC supplier. Surface wettability was evaluated for both the metallographically polished and nanotube-formed surfaces using a contact-angle goniometer. The corrosion properties of the specimens were investigated using a 0.9 wt.% aqueous solution of NaCl at $36^{\circ}C{\pm}5^{\circ}C$ using a potentiodynamic polarization test. Result: Needle-like structure of Ti-25Nb-xZr alloys was transform to equiaxed structure as Zr content increased. Nanotube formed on Ti-25Nb-xZr alloys show two sizes of nanotube structure. The diameters of the large tubes decreased and small tubes increased as Zr content increased. The lower contact angles for nanotube formed Ti-25NbxZr alloys surfaces showed compare to non-nanotube formed surface. The corrosion resistance of alloy increased as Zr content increased, and nanotube formed surface showed longer the passive regions compared to non-treatment surface. Conclusion: It is confirmed that corrosion resistance of alloy increased as Zr content increased, and nanotube formed surface has longer passive region compared to without treatment surface.

Microstructure and Strengthening Behavior in Squeeze Cast Mg-Zn by Addition of Zr (용탕단조 Mg-Zn-Zr 합금의 미세조직 및 강화기구)

  • Oh, Sang-Sub;Hwang, Young-Ha;Kim, Do-Hyang;Hong, Chun-Pyo;Park, Ik-Min
    • Journal of Korea Foundry Society
    • /
    • 제19권1호
    • /
    • pp.38-46
    • /
    • 1999
  • Microstructural characteristics and strengthening behavior in Mg-5wt%Zn-0.6wtZr alloys have been investigated by a combination of optical, secondary electron and transmission electron microscopy, differential thermal analysis, and hardness and tensile, creep property measurements. The result have been compared with those of Mg-5wt%Zn alloys. The as-squeeze cast microstructure consisted of dendrite ${\alpha}-Mg$, interdendrite or intergranular $Mg_7Zn_3$ and fine dispersoids of $ZnZr_2$. The size of secondary solidification phases in Mg-5wt%Zn-0.6wtZr alloys was significantly smaller than that of the Mg-5wt%Zn alloys due to the existence of fine dispersoid of $ZnZr_2$ which also effected the refinement of grain size. TEM study showed that the main cause of age hardening is formation of fine rodlike ${\beta}_1\;'$ precipitates as well as fine $ZnZr_2$ dispersoids. Due to the observed microstructural characteristics mechanical propeties of Mg-5wt%Zn-0.6wtZr alloys was found to be superior to those of Mg-5wt%Zn alloys.

  • PDF