• Title/Summary/Keyword: Zoom Motion

Search Result 54, Processing Time 0.019 seconds

Design and Development of Multiple Input Device and Multiscale Interaction for GOCI Observation Satellite Imagery on the Tiled Display (타일드 디스플레이에서의 천리안 해양관측 위성영상을 위한 다중 입력 장치 및 멀티 스케일 인터랙션 설계 및 구현)

  • Park, Chan-Sol;Lee, Kwan-Ju;Kim, Nak-Hoon;Lee, Sang-Ho;Seo, Ki-Young;Park, Kyoung Shin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.541-550
    • /
    • 2014
  • This paper describes a multi-scale user interaction based tiled display visualization system using multiple input devices for monitoring and analyzing Geostationary Ocean Color Imager (GOCI) observation satellite imagery. This system provides multi-touch screen, Kinect motion sensing, and moblie interface for multiple users to control the satellite imagery either in front of the tiled display screen or far away from a distance to view marine environmental or climate changes around Korean peninsular more effectively. Due to a large amount of memory required for loading high-resolution GOCI satellite images, we employed the multi-level image load technique where the image was divided into small tiled images in order to reduce the load on the system and to be operated smoothly by user manipulation. This system performs the abstraction of common input information from multi-user Kinect motion and gestures, multi-touch points and mobile interaction information to enable a variety of user interactions for any tiled display application. In addition, the unit of time corresponding to the selected date of the satellite images are sequentially displayed on the screen and multiple users can zoom-in/out, move the imagery and select buttons to trigger functions.

A Multi Small Humanoid Robot Control for Efficient Robot Performance (효율적인 전시공연을 위한 멀티 소형 휴머노이드 로봇제어)

  • Jang, Jun-Young;Lin, Chi-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8933-8939
    • /
    • 2015
  • In this paper, we designed a multi humanoid robot control method for performing an exhibition that will maximize the efficiency and user convenience and implementation. In recent years, an increasing number of case and to take advantage of the robots in the field performances and exhibitions, plays, musicals, orchestra performances are also various genres. In concert with the existing small humanoid exhibition to source from outside by using a computer and MP3 player and play, while pressing the start button of communication equipment for the show to start the robot began performing with the zoom. Thus, due to the dual source and robot operation and synchronization does not work well is the synchronization of the start of the concert sound starting point of the robot and robot motion and sound are reproduced separately were frequently occurs when you need to restart the show. In addition, when the center of gravity or lose the robots who were present during the performance problems such as performance or intervene to restart the show. In order to overcome this, in this paper, Multi-small humanoid robot was designed to control the efficiency and the user of the GUI-based human interface S/W to maximize convenience, Zigbee communication to transmit a plurality of data in al small humanoid It was used. In addition, targeting a number of the small humanoid robot demonstrated the effectiveness and validity of the user's convenience by gender actual implementation.

A Camera Tracking System for Post Production of TV Contents (방송 콘텐츠의 후반 제작을 위한 카메라 추적 시스템)

  • Oh, Ju-Hyun;Nam, Seung-Jin;Jeon, Seong-Gyu;Sohn, Kwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.14 no.6
    • /
    • pp.692-702
    • /
    • 2009
  • Real-time virtual studios which could run only on expensive workstations are now available for personal computers thanks to the recent development of graphics hardware. Nevertheless, graphics are rendered off-line in the post production stage in film or TV drama productions, because the graphics' quality is still restricted by the real-time hardware. Software-based camera tracking methods taking only the source video into account take much computation time, and often shows unstable results. To overcome this restriction, we propose a system that stores camera motion data from sensors at shooting time as common virtual studios and uses them in the post production stage, named as POVIS(post virtual imaging system). For seamless registration of graphics onto the camera video, precise zoom lens calibration must precede the post production. A practical method using only two planar patterns is used in this work. We present a method to reduce the camera sensor's error due to the mechanical mismatch, using the Kalman filter. POVIS was successfully used to track the camera in a documentary production and saved much of the processing time, while conventional methods failed due to lack of features to track.

A Real-Time Head Tracking Algorithm Using Mean-Shift Color Convergence and Shape Based Refinement (Mean-Shift의 색 수렴성과 모양 기반의 재조정을 이용한 실시간 머리 추적 알고리즘)

  • Jeong Dong-Gil;Kang Dong-Goo;Yang Yu Kyung;Ra Jong Beom
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.6
    • /
    • pp.1-8
    • /
    • 2005
  • In this paper, we propose a two-stage head tracking algorithm adequate for real-time active camera system having pan-tilt-zoom functions. In the color convergence stage, we first assume that the shape of a head is an ellipse and its model color histogram is acquired in advance. Then, the min-shift method is applied to roughly estimate a target position by examining the histogram similarity of the model and a candidate ellipse. To reflect the temporal change of object color and enhance the reliability of mean-shift based tracking, the target histogram obtained in the previous frame is considered to update the model histogram. In the updating process, to alleviate error-accumulation due to outliers in the target ellipse of the previous frame, the target histogram in the previous frame is obtained within an ellipse adaptively shrunken on the basis of the model histogram. In addition, to enhance tracking reliability further, we set the initial position closer to the true position by compensating the global motion, which is rapidly estimated on the basis of two 1-D projection datasets. In the subsequent stage, we refine the position and size of the ellipse obtained in the first stage by using shape information. Here, we define a robust shape-similarity function based on the gradient direction. Extensive experimental results proved that the proposed algorithm performs head hacking well, even when a person moves fast, the head size changes drastically, or the background has many clusters and distracting colors. Also, the propose algorithm can perform tracking with the processing speed of about 30 fps on a standard PC.