• Title/Summary/Keyword: Zone Model

Search Result 2,410, Processing Time 0.025 seconds

아트리움 공간에 있어서 화재에 의한 연기 유동에 관한 수치해석적 연구

  • 노재성;유홍선;정연태
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1997.11a
    • /
    • pp.43-48
    • /
    • 1997
  • The smoke filling process for the atrium space containing a fire source is simulated using two types of deterministic fire modus: Zone model and Field model. The zone mode used is the CFAST(version 1.6) mode developed at the Building and Fire Research laboratories, NIST in the USA. The lied model is a self-developed fire field model based on Computational Fluid Dynamics(CFD) theories. This article is focused on finding out the smoke movement and temperature distribution in atrium space which is cubic in shape. A computational procedure for predicting velocity and temperature distribution in fro-induced flow is based on the solution, in finite volume method and non-staggered grid system, of 3-dimensional equations for the conservation of mass, momentum, energy, species and so forth. The fire model i. e. Zone model and Field model predicted similar results for Ire clear height and the smoke layer temperature.

  • PDF

A simple panel zone model for linear analysis of steel moment frames

  • Saffari, Hamed;Morshedi, Esmaeil
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.579-598
    • /
    • 2020
  • Consideration of the panel zone (PZ) deformations in the analysis of steel moment frames (SMFs) has a substantial effect on structural response. One way to include the PZ effect on the structural response is Krawinkler's PZ model, which is one of the best and conventional models. However, modeling of Krawinkler's PZ model has its complexity, and finding an alternative procedure for PZ modeling is of interest. In this study, an efficient model is proposed to simplify Krawinkler's PZ model into an Adjusted Rigid-End Zone (AREZ). In this way, the rigid-end-zone dimensions of the beam and column elements are defined through an appropriate rigid-end-zone factor. The dimensions of this region depend on the PZ stiffness, beam(s) and columns' specifications, and connection joint configuration. Thus, to obtain a relationship for the AREZ model, which yields the dimensions of the rigid-end zone, the story drift of an SMF with Krawinkler's PZ model is equalized with the story drift of the same structure with the AREZ model. Then, the degree of accuracy of the resulting relationship is examined in several connections of generic SMFs. Also, in order to demonstrate the applicability of the proposed model in SMFs, several SMFs ranging from 3- to 30-story representing low- to high-rise buildings are examined through linear static and dynamic time history analysis. Furthermore, non-linear dynamic analyses of three SMFs conducted to validate the degree of accuracy of the proposed model in the non-linear analysis of SMFs. Analytical results show that there is considerable conformity between inter-story drift ratio (IDR) results of the SMFs with Krawinkler's PZ model and those of the centerline SMFs with AREZ.

A Study on the Effect of Injection Rate on Emission Characteristics in D.I. Diesel Engine by Multi-zone Model (Multi-zone 모델에 의한 디젤엔진에서의 분사율 변화에 따른 배기가스 특성에 관한 연구)

  • ;;;;Liu Shenghua
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.94-103
    • /
    • 1999
  • A model for the prediction of combustion and exhaust emissions of DI diesel engine has been formulated and developed . This model is a quasi-dimensional phenomenological one and is based on multi-zone combustion modelling concept. It takes into consideration, on a zonal basis ,detailed of fuel spray formation, droplet evaporation, air-fuel mixing, spray wall interaction, swirl , heat transfer, self ignition and burning rate . The emission model is considered with chemical equipment , as well as the kinetics of fuel. NO and soot reactions in order to calculate the pollutant concentrations within each zone and the whole of cylinder . The accuracy of prediction versus experimental data and the capability of the model in predicting engine heat release, cylinder pressure and all the major exhaust emissions on zonal and cumulative basis., is demonstrated. Detailed prediction results showing the sensitivity of the model bv various injection rates are presented and discussed.

  • PDF

First-Order Mass Transfer in a Diffusion-Dominated (Immobile) Zone of an Axisymmetric Pore: Semi-Analytic Solution and Its Limitations (대칭형 다공성 매질의 확산주도 영역에 관한 1차 물질이동 방정식)

  • Kim, Young-Woo;Kang, Ki-jun;Cho, Jung-ho;Kabala, Zbigniew
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4664-4670
    • /
    • 2010
  • Comparison of the classical mobile-immobile zone (MIM) model to the derived model led to several conclusions. If the MIM model is to be applied, the initial concentration in the immobile zone has to be down-scaled by a correction factor that is a function of pore geometry. The MIM model was valid only after sufficiently long time has passed, i.e., only after the diffusion front reaches the deepest pore wall in the immobile zone. The MIM mass-transfer coefficient $\alpha$, was inversely proportional to the square of the pore depth. Also it did not depend on the mobile-zone flow velocity, contrary to the number of laboratory and field observations. The classical MIM model displayed a rapid exponential decay of immobile-zone concentration. Meanwhile at large times, the newly derived model displayed similar exponential decay. This was contrary to the mounting evidence of power-law BTC tails observed in laboratory and field settings.

A Mathematical Model for Pyrolysis Processes During Unforced Smoldering of Cigarette (비흡입시 연소하는 담배의 열분해 작용에 관한 수학적 모델)

  • 이성철
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.17 no.2
    • /
    • pp.160-169
    • /
    • 1995
  • A mathematical model for the pyrolysis processes during unforced smoldering of cigarette was proposed in this study by analyzing the physical model of the smoldering cigarette (including the establishment of burning front between burning zone and pyrolysis zone, and analyzing the involvement of main factors such as pyrolysis of virgin tobacco, evaporation of water, and internal heat transport in the processes). Thermal conduction of cigarette paper and convective and radiative heat transfer at the outer surface were also considered via the thermal resistance law for the competitive heat transfer mechanisms. The governing partial differential equations were solved using an integral method. Model predictions of smoldering speed, or linear burn rate, as well as temperature and density profiles in the pyrolysis zone for different kinds of cigarettes were found to be close to the experimental data in the literature (Muramatsu, 1981). The model provides a relatively fast and efficient way to simulate the pyrolysis processes and offers a practical tool for exploring important parameters for a smoldering cigarette, such as blended tobacco composition, properties of cigarette paper, and heat flux from the burning zone to the pyrolysis zone.

  • PDF

Finite Element Modeling of Fracture Process Zone in Concrete (콘크리트 파괴진행영역의 유한요소모델링)

  • 송하원;변근주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.04a
    • /
    • pp.35-41
    • /
    • 1995
  • Fracture Mechanics does work for concrete, provided that a finite nonlinear zone at fracture front is being considered. The development of model for fracture process zone is most important to describe fracture phenomena in concrete. The fracture process zone is a region ahead of a traction-free crack, in which two major mechanisms, microcracking and bridging, play important rules. The toughness due to bridging is dominant compared to toughness induced by microcracking, so that the bridging is dominant mechanism governing the fracture process of concrete. In this paper the bridging zone, which is a part of extended macrocrack with stresses transmitted by aggregates in concrete, is model led by a Dugdale-Barenblatt type model with linear tension-softening curve. Two finite element techniques are shown for the model of fracture process zone in concrete.

  • PDF

A Study on the Calculation of Heat Release Rate to Compensate the Error due to Single Zone Assumption in Diesel Engines (단일 영역 모델 열발생율 계산 방법의 개선에 관한 연구)

  • Kim Ki-Doo;Yoon Wook-Hyeon;Ha Ji-Soo;Ryu Seung-Hyup
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.7
    • /
    • pp.1063-1071
    • /
    • 2004
  • Accurate heat release analysis of cylinder pressure data is important for evaluating performance in the development of diesel engine However, traditional single zone first law heat release model(SZM) has significant limitations due to the simplified assumption of uniform charge and neglecting local temperature inside cylinder during combustion process. In this study. heat release rate based on single zone heat release model has been evaluated by comparison with computational analysis results using Fire code which is based on multi-dimensional model(MDM). To overcome limitations due to simplicity of single zone assumption. especially the influence of specific heat ratio on gross heat release has been esteemed and newly suggested were the equation $\gamma$= $\gamma$(${T/T}_{max}$) which describes the variations of gases thermodynamic properties with mean temperature and maximum mean temperature inside cylinder Single zone heat release model applied with this equation is shown to give very good results over whole range of operating conditions when compared with computational analysis results based on multi-dimensional model.

Analysis of a Fire in an Apartment Building Using a Zone Model (ZONE MODEL을 이용한 아파트에서의 화재 해석)

  • 박진국;김충익;유홍선;윤명오
    • Fire Science and Engineering
    • /
    • v.11 no.2
    • /
    • pp.25-33
    • /
    • 1997
  • Fire hazards in an apartment building that represents the average households in Korean were investigated by conducting a full-scale experiment. This experiment attempts to analyze fire hazards using materials, and furnishings common to Korean housing stock. Experimental results are compared to the predictions of the C-FAST and smoke transport computer model. Comparisons between experimental data and C-FAST data are performed only to a living-room fire. Flashover occurred at approximately 380 seconds in a fire experinent, and at approximately 420 seconds in Zone-Model. Based on all of data between experimental data between experimental data and Zone-Model data, it is concluded that the safe egress time is at least 250 seconds.

  • PDF

Response of lap splice of reinforcing bars confined by FRP wrapping: modeling approach

  • Thai, Dam Xuan;Pimanmas, Amorn
    • Structural Engineering and Mechanics
    • /
    • v.37 no.1
    • /
    • pp.95-110
    • /
    • 2011
  • This paper presents a tri-uniform bond stress model for predicting the lap splice strength of reinforcing bar at the critical bond splitting failure. The proposed bond distribution model consists of three zones, namely, splitting zone, post-splitting zone and yielding zone. In each zone, the bond stress is assumed to be constant. The models for bond strength in each zone are adopted from previous studies. Combining the equilibrium, strain-slip relation and the bond strength model in each zone, the steel stress-slip model can be derived, which can be used in the nonlinear frame analysis of the column. The proposed model is applied to derive explicit equations for predicting the strength of the lap splice strengthened by fiber reinforced polymer (FRP) in both elastic and post-yield ranges. For design purpose, a procedure to calculate the required FRP thickness and the number of FRP sheets is also presented. A parametric investigation was conducted to study the relation between lap splice strength and lap splice length, number and thickness of FRP sheets and the ratio of concrete cover to bar diameter. The study shows that the lap splice strength can be enhanced by increasing one of these parameters: lap splice length, number or thickness of FRP sheets and concrete cover to bar diameter ratio. Verification of the model has been conducted using experimental data available in literature.