• 제목/요약/키워드: ZnSnO layer

검색결과 78건 처리시간 0.024초

Fabrication and characterization of silicon-based microsensors for detecting offensive $CH_3SH\;and\; (CH_3)_3N$ gases

  • Lee, Kyu-Chung;Hur, Chang-Wu
    • Journal of information and communication convergence engineering
    • /
    • 제6권1호
    • /
    • pp.38-42
    • /
    • 2008
  • Highly sensitive and mechanically stable gas sensors have been fabricated using the microfabrication and micromachining techniques. The sensing materials used to detect the offensive $CH_3SH$ and $(CH_3)_3N$ gases are 1 wt% Pd-doped $SnO_2$ and 6 wt% $Al_2O_3$-doped ZnO, respectively. The optimum operating temperatures of the devices are $250^{\circ}C$ and $350^{\circ}C$ for $CH_3SH$ and $(CH_3)_3N$, respectively and the corresponding heater power is, respectively, about 55mW and 85mW. Excellent thermal insulation is achieved by the use of a double-layer membrane: i.e. $0.2{\mu}m$-thick silicon nitride and $1.4{\mu}m$-thick phosphosilicate glass. The sensors are mechanically stable enough to endure the heat cycles between room temperature and $350^{\circ}C$, at least for 30 days.

Effects of Mg Suppressor Layer on the InZnSnO Thin-Film Transistors

  • Song, Chang-Woo;Kim, Kyung-Hyun;Yang, Ji-Woong;Kim, Dae-Hwan;Choi, Yong-Jin;Hong, Chan-Hwa;Shin, Jae-Heon;Kwon, Hyuck-In;Song, Sang-Hun;Cheong, Woo-Seok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제16권2호
    • /
    • pp.198-203
    • /
    • 2016
  • We investigate the effects of magnesium (Mg) suppressor layer on the electrical performances and stabilities of amorphous indium-zinc-tin-oxide (a-ITZO) thin-film transistors (TFTs). Compared to the ITZO TFT without a Mg suppressor layer, the ITZO:Mg TFT exhibits slightly smaller field-effect mobility and much reduced subthreshold slope. The ITZO:Mg TFT shows improved electrical stabilities compared to the ITZO TFT under both positive-bias and negative-bias-illumination stresses. From the X-ray photoelectron spectroscopy O1s spectra with fitted curves for ITZO and ITZO:Mg films, we observe that Mg doping contributes to an enhancement of the oxygen bond without oxygen vacancy and a reduction of the oxygen bonds with oxygen vacancies. This result shows that the Mg can be an effective suppressor in a-ITZO TFTs.

이온빔 스퍼터링으로 증착한 IZTO 박막의 결정화 거동과 전기적 특성 분석 (Crystallization Behavior and Electrical Properties of IZTO Thin Films Fabricated by Ion-Beam Sputtering)

  • 박지운;박양규;이희영
    • 한국전기전자재료학회논문지
    • /
    • 제34권2호
    • /
    • pp.99-104
    • /
    • 2021
  • Ion-beam sputtering (IBS) was used to deposit semiconducting IZTO (indium zinc tin oxide) thin films onto heavily-doped Si substrates using a sintered ceramic target with the nominal composition In0.4Zn0.5Sn0.1O1.5, which could work as a channel layer for oxide TFT (oxide thin film transistor) devices. The crystallization behavior and electrical properties were examined for the films in terms of deposition parameters, i.e. target tilt angle and substrate temperature during deposition. The thickness uniformity of the films were examined using a stylus profilometer. The observed difference in electrical properties was not related to the degree of crystallization but to the deposition temperature which affected charge carrier concentration (n), electrical resistivity (ρ), sheet resistance (Rs), and Hall mobility (μH) values of the films.

양자점 층의 미세구조 형상이 양자점 LED 전계 발광 특성에 미치는 효과 (Effect of Microstructure of Quantum Dot Layer on Electroluminescent Properties of Quantum Dot Light Emitting Devices)

  • 윤성룡;전민현;이전국
    • 한국재료학회지
    • /
    • 제23권8호
    • /
    • pp.430-434
    • /
    • 2013
  • Quantum dots(QDs) with their tunable luminescence properties are uniquely suited for use as lumophores in light emitting device. We investigate the microstructural effect on the electroluminescence(EL). Here we report the use of inorganic semiconductors as robust charge transport layers, and demonstrate devices with light emission. We chose mechanically smooth and compositionally amorphous films to prevent electrical shorts. We grew semiconducting oxide films with low free-carrier concentrations to minimize quenching of the QD EL. The hole transport layer(HTL) and electron transport layer(ETL) were chosen to have carrier concentrations and energy-band offsets similar to the QDs so that electron and hole injection into the QD layer was balanced. For the ETL and the HTL, we selected a 40-nm-thick $ZnSnO_x$ with a resistivity of $10{\Omega}{\cdot}cm$, which show bright and uniform emission at a 10 V applied bias. Light emitting uniformity was improved by reducing the rpm of QD spin coating.At a QD concentration of 15.0 mg/mL, we observed bright and uniform electroluminescence at a 12 V applied bias. The significant decrease in QD luminescence can be attributed to the non-uniform QD layers. This suggests that we should control the interface between QD layers and charge transport layers to improve the electroluminescence.

Effect of Annealing Time on Electrical Performance of SiZnSnO Thin Film Transistor Fabricated by RF Magnetron Sputtering

  • Ko, Kyung Min;Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권2호
    • /
    • pp.99-102
    • /
    • 2015
  • Thin film transistors (TFTs) with amorphous 2 wt% silicon-doped zinc tin oxide (a-2SZTO) channel layer were fabricated using an RF magnetron sputtering system, and the effect of post-annealing treatment time on the structural and electrical properties of a-2SZTO systems was investigated. It is well known that Si can effectively reduce the generation of oxygen vacancies. However, it is interesting to note that prolonged annealing could have a bad effect on the roughness of a-2SZTO systems, since the roughness of a-2SZTO thin films increases in proportion to the thermal annealing treatment time. Thermal annealing can control the electrical characteristics of amorphous oxide semiconductor (AOS) TFTs. It was observed herein that prolonged annealing treatment can cause bumpy roughness, which led to increase of the contact resistance between the electrode and channel. Thus, it was confirmed that deterioration of the electrical characteristics could occur due to prolonged annealing. The longer annealing time also decreased the field effect mobility. The a-2SZTO TFTs annealed at 500℃ for 2 hours displayed the mobility of 2.17 cm2/Vs. As the electrical characteristics of a-2SZTO annealed at a fixed temperature for long periods were deteriorated, careful optimization of the annealing conditions for a-2SZTO, in terms of time, should be carried out to achieve better performance.

Ag 성막위치에 따른 ZTO/폴리카보네이트 필름의 특성 변화 (Influence of Ag Film Position on the Properties of ZTO/Poly-carbonate Thin Films)

  • 송영환;엄태영;천주용;차병철;최동혁;손동일;김대일
    • 열처리공학회지
    • /
    • 제30권3호
    • /
    • pp.113-116
    • /
    • 2017
  • 100 nm thick Sn doped ZnO (ZTO) single layer, 15 nm thick Ag buffered ZTO (ZTO/Ag), Ag intermediated ZTO (ZTO/Ag/ZTO) and Ag capped ZTO (Ag/ZTO) films were prepared on poly-carbonate (PC) substrates by RF and DC magnetron sputtering and then the influence of the Ag thin film on the optical and electrical properties of ZTO films were investigated. As deposited ZTO thin films show the visible transmittance of 81.8%, while ZTO/Ag/ZTO trilayer films show a higher visible transmittance of 82.5% in this study. From the observed results, it can be concluded that the 15 nm thick Ag interlayer enhances the opto-electrical performance of ZTO thin films effectively for use as flexible transparent conducting oxides films in various opto-electrical applications.

ITZO (In-Sn-Zn-O) 박막의 전기적 및 광학적 특성의 두께 의존성 (Thickness Dependence of Electrical and Optical Properties of ITZO (In-Sn-Zn-O) Thin Films)

  • 강성준;정양희
    • 한국정보통신학회논문지
    • /
    • 제21권7호
    • /
    • pp.1285-1290
    • /
    • 2017
  • 본 연구에서는 고주파 마그네트론 스퍼터링 법으로 두께를 변화시켜가며 유리기판 위에 ITZO 박막을 제작하여 전기적, 광학적, 구조적 특성을 조사하였다. ITZO 박막의 두께가 증가함에 따라 면저항은 현저하게 감소하는 추세를 보였으나, 비저항은 ITZO 박막의 두께와 무관하게 $5.06{\pm}1.23{\times}10^{-4}{\Omega}{\cdot}cm$의 거의 일정한 값을 나타내었다. ITZO 박막의 두께가 증가할수록 투과도 곡선이 장파장 쪽으로 이동하였다. 두께 360 nm 인 ITZO 박막의 가시광 영역에서와 P3HT : PCBM 유기물 활성층의 흡수 영역에서의 재료평가지수는 각각 $8.21{\times}10^{-3}{\Omega}^{-1}$$9.29{\times}10^{-3}{\Omega}^{-1}$로 가장 우수한 값을 나타내었다. XRD와 AFM 측정을 통해, 두께에 상관없이 모든 ITZO 박막이 비정질 구조이며 표면 거칠기는 0.309에서 0.540 nm 범위로 매우 부드러운 표면을 가지고 있음을 확인할 수 있었다. 본 연구를 통해 비정질 ITZO 박막이 유기박막 태양전지에 매우 유망한 재료라는 것을 알 수 있었다.

RF 마그네트론 스퍼터링법으로 상온 증착된 비정질 ITZO 산화물의 전기적 및 광학적 특성 (Electrical and Optical Properties of Amorphous ITZO Deposited at Room Temperature by RF Magnetron Sputtering)

  • 이기창;조광민;이준형;김정주;허영우
    • 한국표면공학회지
    • /
    • 제47권5호
    • /
    • pp.239-243
    • /
    • 2014
  • The electrical and optical properties of amorphous In-Tin-Zinc-Oxide(ITZO) deposited at room temperature using rf-magnetron sputtering were investigated. The amorphous ITZO thin films were obtained at the composition of In:Sn:Zn = 6:2:2, 4:3:3, and 2:4:4, but the ITZO (8:1:1) showed a crystalline phase of bixbyite structure of In2O3. The resistivity of ITZO could be controlled by oxygen pressure in the sputtering ambient. The resistivity of post-annealed ITZO thin films exhibited the dependence on the amount of Indium. Optical energy band gap and transmittance increased as the amount of indium in ITZO increased. For the device application with ITZO, the bottom-gated thin-film transistor using ITZO as a active channel layer was fabricated. It showed a threshold voltage of 1.42V and an on/off ratio of $5.63{\times}10^7$ operated with saturation field-effect mobility of $14.2cm^2/V{\cdot}s$.