• Title/Summary/Keyword: ZnS-$SiO_2$

Search Result 226, Processing Time 0.033 seconds

Fabrication and Optical Property of ZnO/SiO2 Branch Hierarchical Nanostructures (ZnO/SiO2 가지형 나노계층구조의 제작 및 광학적 특성 연구)

  • Ko, Y.H.;Kim, M.S.;Yu, J.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.5
    • /
    • pp.381-386
    • /
    • 2011
  • We fabricated the ZnO (zinc oxide)/$SiO_2$ (silicon dioxide) branch hierarchical nanostructures by the e-beam evaporation of $SiO_2$ onto the surface of the electrochemically grown ZnO nanorods on Si substrate, which leads to the self-assembled $SiO_2$ nanorods by oblique angle deposition between vapor flux and vertically aligned ZnO nanorods. In order to investigate the effects of $SiO_2$ deposition on the morphology and optical property of ZnO/$SiO_2$ branch hierarchical nanostructures, the evaporation time of $SiO_2$ was varied under a fixed deposition rate of 0.5 nm/s. The vertically aligned ZnO nanorods on Si substrate exhibited a low reflectance of <10% in the wavelength range of 300~535 nm. For ZnO/$SiO_2$ branch hierarchical nanostructures at 100 s of evaporation time of $SiO_2$, the more improved antireflective property was achieved. From these results, ZnO/$SiO_2$ branch hierarchical nanostructures are very promising for optoelectronic and photovoltaic device applications.

Preparation of ZnO/SiO2 Nano-Composition and Photocatalysts and Antibacterial Activity (ZnO/SiO2 나노 입자의 화학적 합성과 광촉매 및 항균성 특성에 관한 연구)

  • Kim, Jae-Uk;Yuk, Young-Sam;Kim, Jong-Gyu
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.4
    • /
    • pp.179-184
    • /
    • 2017
  • In this paper, a $ZnO/SiO_2$ nano-composite was prepared by a simple chemical method at room temperature. For the synthesis of ZnO nanoparticles (NPs), a sonochemical method was used, and $SiO_2$ NPs were prepared by precipitation method. The formation of $ZnO/SiO_2$ NCs was characterized by X-ray diffractometer (XRD) and confirmed by field-emission scanning electron microscopy (FE-SEM) and Fourier transform infra-red spectroscopy(FT-IR). The photocatalytic properties of $ZnO/SiO_2$ NCs formed at different concentrations of $SiO_2$ were evaluated by rhodamine-B dye. It was confirmed that increasing $SiO_2$ concentration resulted in an increase in the photocatalytic property. In addition, the antibacterial activity of $ZnO/SiO_2$ NCs was conducted against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). As a result, the antibacterial activities of E.coli and S. aureus were increased in the presence of thick SiO NPs layer.

SiO2/ZnS:Cu/ZnS Triplex Layer Coatings for Phosphorescence Enhancement

  • Zhang, Wen-Tao;Lee, Hong-Ro
    • Journal of Surface Science and Engineering
    • /
    • v.41 no.4
    • /
    • pp.169-173
    • /
    • 2008
  • The objective of this study is to coat the $SiO_2$ layer uniformly on the ZnS:Cu phosphors by using Sol-Gel method. From results of SEM micrographs observation, XRD and XPS analysis, it could be confirmed that $SiO_2$ layer was relatively well coated on ZnS:Cu particles. $Ag_2S$ was used as a decoding chemical to analyze the dense and uniform coating performance of $SiO_2$ layer on phosphor particles. It could be concluded that phosphors synthesized from our two step replacement method showed strong blue peak comparing to other method and rather weak green peak also. Obtained particle size of phosphors were about 20m diameter. Luminescence properties of the phosphors were examined by photoluminescence spectra at the excitation wavelength of 270 nm.

Crystallographic Characteristics of ZnO Films Deposited on SiO$_2$/Si Substrate

  • Park, H.D.;Kim, K.S.;Lee, C.S.;Kim, J.W.;Han, B.M.;Kim, S.Y.
    • Journal of Surface Science and Engineering
    • /
    • v.28 no.6
    • /
    • pp.386-392
    • /
    • 1995
  • The RF planar magnetron sputtering technique was used to fabricate uniform ZnO/$SiO_2$/Si thin films at high growth rate. A detailed crystallographic character of these thin films has been carried oct using XRD, XRC, and SEM. These thin films have the configuration of c-axis orientation perpendicular to $SiO_2$/ Si substrate. The dependence of the thickness of ZnO/$SiO_2$/Si films on applied RF power parameters was also investigated. The crystallinity of films was improved as the substrate temperature was high, RF input power increased, and Ar/$O_2$ ratio decreased. Also, most of ZnO films fabricated on $SiO_2$/Si were suitable for SAW filter since a standard deviation of XRC (002) peak was less than $6^{\circ}$. The presence of the $SiO_2$ layer has a beneficial effect on the crystalline quality of the grown ZnO films.

  • PDF

Valuation properties of $SiO_2-B_2O_3$-R(R=CaO, BaO, ZnO, $Bi_2O_3$) borosilicate glass system for fabricating low temperature ceramics (저온 소결 세라믹스 제조를 위한 $SiO_2-B_2O_3$-R(CaO, BaO, ZnO, $Bi_2O_3$)계 붕규산염 유리 특성 평가)

  • Yoon, Sang-Ok;Lee, Hyun-Sik;Kim, Kwan-Soo;Heo, Wuk;Shim, Sang-Heung;Park, Jong-Guk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.272-273
    • /
    • 2006
  • LTCC(low temperature co-fired ceramics)용 glass/ceramic 복합체를 제조하기 위해 4 종류의 borosilicate계 glass를 선정하고 filler로 $Al_2O_3$ ceramics를 filler 사용하여 30~50 vol% glass frit에 따른 소결 및 유전 특성에 대하여 조사하였다. Glass frit은 $SiO_2$$B_2O_3$ 함량비를 고정한 후 R(CaO, BaO, ZnO, $Bi_2O_3$)에 따라 유리 연화온도(Ts)와 함량이 소결에 미치는 영향 및 유전 특성 변화를 고찰한 결과, CaO-$B_2O_3-SiO_2$ glass의 경우 다량의 2 차상이 형성되었고, 이에 $900^{\circ}C$ 이하에서 완전 소결이 이루어지지 않았으며, BaO-$B_2O_3-SiO_2$ glass는 celsian($BaAl_2Si_2O_8$) 결정이 형성되면서 소결성의 저하를 갖고 왔으며, ZnO-$B_2O_3-SiO_2$ glass는 소결이 진행됨에 따라 주상이 $Al_2O_3$에서 gahnite($ZnAl_2O_4$) 결정이 형성되면서 품질계수가 크게 증가하였으며, $Bi_2O_3-B_2O_3-SiO_2$ glass는 45 vol%일 때 $900^{\circ}C$에서부터 일정한 선수축율 특성을 나타내었지만, 다량의 액상으로 인하여 유전 특성의 저하를 나타내었다.

  • PDF

Development of ZnS/SiO2 Double Overlayers for the Enhanced Photovoltaic Properties of Quantum Dot-Sensitized Solar Cells (양자점 감응 태양전지의 광전 특성 향상을 위한 ZnS/SiO2 이중 오버레이어 개발)

  • SONG, INCHEUL;JUNG, SUNG-MOK;SEO, JOO-WON;KIM, JAE-YUP
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.6
    • /
    • pp.656-662
    • /
    • 2021
  • For the high efficiencies of quantum dot-sensitized solar cells (QDSCs), it is important to control the severe electron recombination at the interface of photoanode/electrolyte. In this work, we optimize the surface passivation process of ZnS/SiO2 double overlayers for the enhanced photovoltaic performances of QDSCs. The overlayers of zinc sulfide (ZnS) and SiO2 are coated on the surface of QD-sensitized photoanode by successive ionic layer adsorption and reaction (SILAR) method, and sol-gel reaction, respectively. In particular, for the sol-gel reaction of SiO2, the influences of temperature of precursor solution are investigated. By application of SiO2 overlayers on the ZnS-coated photoanode, the conversion efficiency of QDSCs is increased from 5.04% to 7.35%. The impedance analysis reveals that the electron recombination at the interface of photoanode/electrolyte is obviously reduced by the SiO2 overlayers.

The fabrication and characterization of composite $ZnS-SiO_2$ optical films (혼합 $ZnS-SiO_2$ 광학 박막의 제작 및 특성분석)

  • 성창민;이경진;류태욱;정종영;김석원;한성홍
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.2
    • /
    • pp.70-75
    • /
    • 1998
  • The ZnS-SiO$_2$ composite films were fabricated by codeposition from two independent sources. The optical properties and microstructures of these composite films were investigated. The refractive indices of the composite films were compared those by Drude's fomula and showed a good agreement. it showed that microstructures of composite films are an armorphous. But microstructures of composite films with ion assisted deposition are changed from an armorphous to crystalline with increasing Zn mole fractions. We designed and fabricated a single layer antireflection coating on the crystalline silicon substrate using the refractive index of the composite films.

  • PDF

Synthesis and Characterization of Magnetic Core-shell ZnFe2O4@ZnO@SiO2 Nanoparticles (Magnetic Core-shell ZnFe2O4@ZnO@SiO2 Nanoparticle의 합성과 성질에 관한 연구)

  • Yoo, Jeong-Yeol;Lee, Young-Ki;Kim, Jong-Gyu
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.5
    • /
    • pp.397-406
    • /
    • 2015
  • ZnO, II-VI group inorganic compound semi-conductor, has been receiving much attention due to its wide applications in various fields. Since the ZnO has 3.37 eV of a wide band gap and 60 meV of big excitation binding energy, it is well-known material for various uses such the optical property, a semi-conductor, magnetism, antibiosis, photocatalyst, etc. When applied in the field of photocatalyst, many research studies have been actively conducted regarding magnetic materials and the core-shell structure to take on the need of recycling used materials. In this paper, magnetic core-shell ZnFe2O4@SiO2 nanoparticles (NPs) have been successfully synthesized through three steps. In order to analyze the structural characteristics of the synthesized substances, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FT-IR) were used. The spinel structure of ZnFe2O4 and the wurtzite structure of ZnO were confirmed by XRD, and ZnO production rate was confirmed through the analysis of different concentrations of the precursors. The surface change of the synthesized materials was confirmed by SEM. The formation of SiO2 layer and the synthesis of ZnFe2O4@ZnO@SiO2 NPs were finally verified through the bond of Fe-O, Zn-O and Si-O-Si by FT-IR. The magnetic property of the synthesized materials was analyzed through the vibrating sample magnetometer (VSM). The increase and decrease in the magnetism were respectively confirmed by the results of the formed ZnO and SiO2 layer. The photocatalysis effect of the synthesized ZnFe2O4 @ZnO@SiO2 NPs was experimented in a black box (dark room) using methylene blue (MB) under UV irradiation.

Low Firing Temperature Nano-glass for Multilayer Chip Inductors (칩인덕터용 저온소성 Nano-glass 연구)

  • An, Sung-Yong;Wi, Sung-Kwon
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.1
    • /
    • pp.43-47
    • /
    • 2008
  • [ $ZnO-Bi_2O_3-Al_2O_3-B_2O_3-SiO_2$ ] nano-glass has been prepared by sol-gel method. The mean particle size was 60.3 nm with narrow size distribution. The nano-galss has been used as a sintering aid for the densification of the NiZnCu ferrites. The ferrite was sintered with nano-glass sintering aids at $840{\sim}900^{\circ}C$, 2 h and the initial permeability, quality factor, density, and saturation magnetization were also measured. The initial permeability of 0.5 wt% nano-glass added toroidal sample for NiZnCu ferrites sintered at $900^{\circ}C$ was 193.3 at 1 MHz. The initial permeability and saturation magnetization were increased with increasing annealing temperature. As a result, $ZnO-Bi_2O_3-Al_2O_3-B_2O_3-SiO_2$ nano-glass systems were found to be useful as sintering aids for multilayer chip inductors.

광전자 소자 응용을 위한 수직 정렬된 ZnO Nanorod Array를 이용한 계층 나노구조

  • Go, Yeong-Hwan;Yu, Jae-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.126-126
    • /
    • 2011
  • 수직으로 정렬된 1차원 ZnO nanorod arrays (NRAs)는 효율적인 반사방지 특성의 기하학적 구조를 갖고 있어, 크기와 모양 그리고 정렬형태의 다양한 설계를 통해 빛의 흡수율과 광 추출효율을 증가시켜 광전소자 및 태양광 소자의 성능을 향상시킬 수 있으며, 최근 이러한 연구에 대한 관심이 집중되고 있다. 본 연구에서는 ZnO NRAs의 넓은 표면적과 불연속적인 독특한 표면을 활용하여 광학적 특성을 효과적으로 개선하였다. 실험을 위해, thermal evaporator를 사용하여 Au와 Ag 그리고 e-beam evaporator를 사용하여 $SiO_2$를 ZnO NRAs 표면에 여러 가지 조건으로 증착하여, 독특한 계층 나노구조의 형성과 광학적 특성을 관찰하였다. 표면 roughness가 큰 FTO/glass 위에 수열합성법을 통해 끝이 뾰족하고, 비스듬히 정렬된 ZnO nano-tip array에 Au를 증착할 경우 ZnO/Au core/shell 구조가 형성되며, Au의 광 흡수율이 매우 크게 증가함을 관찰할 수 있었다. 반면 flat한 표면위에 빽빽하게 수직으로 정렬된 ZnO NRAs를 성장시켜 그 위에 Ag를 증착할 경우, evaporated Ag flux가 ZnO nanorod의 사이에 scattered 되어 ZnO nanorod 기둥의 측면에 직경이 50 nm 이하인 nanoparticles이 decorated 되어 국소표면플라즈몬 현상이 관찰되었으며, 이러한 효과를 통해 입사되는 빛의 흡수율을 효과적으로 증가시킬 수 있었다. 또한, ZnO NRAs의 표면에 $SiO_2$를 e-beam evaporator를 이용하여 증착할 경우, 자연적으로 vapor flux와 ZnO nanorod 사이에 oblique angle이 $80^{\circ}$ 이상으로 증가하여 $SiO_2$ nanorods가 자발적으로 형성되어 ZnO/$SiO_2$ branch 계층형태의 나노구조를 제작할 수 있었다. 이러한 구조는 유효 graded refractive index profile로 인해 기존의 ZnO NRAs보다 개선된 반사방지 특성을 나타냈다. 이러한 계층 나노구조의 광학적 특성을 시뮬레이션을 통해 이론적으로 분석을 통해 광전자 소자의 성능의 개선에 대한 적용 가능성을 조사하였다.

  • PDF