• Title/Summary/Keyword: ZnS nanoparticles

Search Result 99, Processing Time 0.027 seconds

Plasmonic Nanosheet towards Biosensing Applications

  • Tamada, Kaoru
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.105-106
    • /
    • 2013
  • Surface plasmon resonance (SPR) is classified into the propagating surface plasmon (PSP) excited on flat metal surfaces and the local surface plasmon (LSP) excited by metalnanoparticles. It is known that fluorescence signals are enhanced by these two SPR-fields.On the other hand, fluorescence is quenched by the energy transfer to metal (FRET). Bothphenomena are controlled by the distance between dyes and metals, and the degree offluorescence enhancement is determined by the correlation. In this study, we determined thecondition to achieve the maximum fluorescence enhancement by adjusting the distance of ametal nanoparticle 2D sheet and a quantum dots 2D sheet by the use of $SiO_2$ spacer layers. The 2D sheets consisting of myristate-capped Ag nanoparticles (AgMy nanosheets) wereprepared at the air-water interface and transferred onto hydrophobized gold thin films basedon the Langmuir-Schaefer (LS) method [1]. The $SiO_2$ sputtered films with different thickness (0~100 nm) were deposited on the AgMy nanosheet as an insulator. TOPO-cappedCdSe/CdZnS/ZnS quantum dots (QDs, ${\lambda}Ex=638nm$) [2] were also transferred onto the $SiO_2$ films by the LS method. The layered structure is schematically shown in Fig. 1. The result of fluorescence measurement is shown in Fig. 2. Without the $SiO_2$ layer, the fluorescence intensity of the layered QD film was lower than that of the original QDs layer, i.e., the quenching by FRET was predominant. When the $SiO_2$ thickness was increased, the fluorescence intensity of the layered QD film was higher than that of the original QDs layer, i.e., the SPR enhancement was predominant. The fluorescence intensity was maximal at the $SiO_2$ thickness of 20 nm, particularly when the LSPR absorption wavelength (${\lambda}=480nm$) was utilized for the excitation. This plasmonic nanosheet can be integrated intogreen or bio-devices as the creation point ofenhanced LSPR field.

  • PDF

Magnetic Properties of Superparamagnetic Ni-Zn Ferrite for Nano·Bio Fusion Applications (나노·바이오 융합응용을 위한 초상자성 Ni-Zn Ferrite의 자기적 특성연구)

  • Lee, Seung-Wha;Ryu, Yeon-Guk;Yang, Kea-Joon;An, Jung-Su;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.100-105
    • /
    • 2005
  • $Ni_{0.9}Zn_{0.1}Fe_2O_4$ nanoparticles have been prepared by a sol-gel method. The structural and magnetic properties have been investigated by DTA/TGA, XRD, SEM, and $M\ddot{o}ssbauer$ spectroscopy, VSM. $Ni_{0.9}Zn_{0.1}Fe_2O_4$ powder that was annealed at $300^{\circ}C$ has spinel structure and behaved superparamagnetically. The estimated size of superparammagnetic Ni-Zn ferrite nanoparticle is around 10 nm. The hyperfine fields at 13 K for the A and B patterns were found to be 533 and 507 kOe, respectively. The blocking temperature ($T_B$) of superparammagnetic $Ni_{0.9}Zn_{0.1}Fe_2O_4$ nanoparticle is about 250 K. The magnetic anisotropy constant and relaxation time constant of $Ni_{0.9}Zn_{0.1}Fe_2O_4$ nanoparticle were calculated to be $1.6\times10^6\;ergs/cm^3$ and ${\tau}_0=5.0{\times}10^{-13}$ s, respectively. Also, Temperature increased up to $43^{\circ}C$ within 10 minutes under AC magnetic field of 7 MHz. It is considered that $Ni_{0.9}Zn_{0.1}Fe_2O_4$ powder that was annealed at $300^{\circ}C$ is available for biomedicine application such as hyperthermia, drug delivery system and contrast agents in MRI.

Fabrication of CIGS Thin Film Solar Cell by Non-Vacuum Nanoparticle Deposition Technique (비진공 나노입자 코팅법을 이용한 CIGS 박막 태양전지 제조)

  • Ahn, Se-Jin;Kim, Ki-Hyun;Yoon, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.222-224
    • /
    • 2006
  • A non-vacuum process for $Cu(In,Ga)Se_2$ (CIGS) thin film solar cells from nanoparticle precursors was described in this work CIGS nanoparticle precursors was prepared by a low temperature colloidal route by reacting the starting materials $(CuI,\;InI_3,\;GaI_3\;and\;Na_2Se)$ in organic solvents, by which fine CIGS nanoparticles of about 20nm in diameter were obtained. The nanoparticle precursors were mixed with organic binder material for the rheology of the mixture to be adjusted for the doctor blade method. After depositing the mixture of CIGS with binder on Mo/glass substrate, the samples were preheated on the hot plate in air to evaporate remaining solvents ud to burn the organic binder material. Subsequently, the resultant (porous) CIGS/Mo/glass simple was selenized in a two-zone Rapid Thermal Process (RTP) furnace in order to get a solar ceil applicable dense CIGS absorber layer. Complete solar cell structure was obtained by depositing. The other layers including CdS buffer layer, ZnO window layer and Al electrodes by conventional methods. The resultant solar cell showed a conversion efficiency of 0.5%.

  • PDF

X-ray/gamma radiation shielding properties of Aluminium-Bariume-Zinc Oxide nanoparticles synthesized via low temperature solution combustion method

  • K.V. Sathish;K.N. Sridhar;L. Seenappa;H.C. Manjunatha;Y.S. Vidya;B. Chinnappa Reddy;S. Manjunatha;A.N. Santhosh;R. Munirathnam;Alfred Cecil Raj;P.S. Damodara Gupta;B.M. Sankarshan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1519-1526
    • /
    • 2023
  • For the first time Aluminium-BariumeZinc oxide nanocomposite (ZABONC) was synthesized by solution combustion method where calcination was carried out at low temperatures (600℃) to study the electromagnetic (EM) (X/γ) radiation shielding properties. Further for characterization purpose standard techniques like PXRD, SEM, UV-VISIBLE, FTIR were used to find phase purity, functional groups, surface morphology, and to do structural analysis and energy band gap determination. The PXRD pattern shows (hkl) planes corresponding to spinel cubic phase of ZnAl2O4, cubic Ba(NO3)2, α and γ phase of Al2O3 which clearly confirms the formation of complex nano composite. From SEM histogram mean size of nano particles was calculated and is in the order of 17 nm. Wood and Tauc's relation direct energy band gap calculation gives energy gap of 2.9 eV. In addition, EM (X/γ) shielding properties were measured and compared with the theoretical ones using standard procedures (NaI (Tl) detector and multi channel analyzer MCA). For energy above 356 keV the measured shielding parameters agree well with the theory, while below this value slight deviation is observed, due to the influence of atomic/crystallite size of the ZABONC. Hence synthesized ZABONC can be used as a shielding material in EM (X/γ) radiation shielding.

Synthesis and Characterization of Mica Coated with Zinc Oxide Nanoparticles (산화 아연 나노 입자로 도포된 마이카의 합성 및 특성 규명)

  • Kil, Hyun Suk;Kim, Young Ho;Park, Minyoung;Rhee, Seog Woo
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.271-278
    • /
    • 2012
  • In this work, we have prepared the nanocomposite by the reaction of mica and zinc oxide, and investigated the application of nanocomposite to UV protecting creams. Mica treated with 3-aminopropyltrimethoxysilane (APTMS) reacted with 1,4-phenylenediisothiocyanate (PDC) to give -N=C=S functionalized surface, which was further reacted with zinc oxides coated with APTMS to give mica-zinc oxide nanocomposites. The composites were characterized by EA, EDS, TGA, SEM, zeta potential measurement, powder XRD, and DRS UV/Vis analyses. Finally, we measured transmittances of ultraviolet protection creams manufactured by using mica composite covered with zinc oxides in the range of 280~400 nm. The nanocomposites developed in this work might be applicable as inorganic hybrid materials for UV protecting creams.

Dual Role of Acidic Diacetate Sophorolipid as Biostabilizer for ZnO Nanoparticle Synthesis and Biofunctionalizing Agent Against Salmonella enterica and Candida albicans

  • Basak, Geetanjali;Das, Devlina;Das, Nilanjana
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.1
    • /
    • pp.87-96
    • /
    • 2014
  • In the present study, a yeast species isolated from CETP, Vellore, Tamilnadu was identified as Cryptococcus sp. VITGBN2 based on molecular techniques and was found to be a potent producer of acidic diacetate sophorolipid in mineral salt media containing vegetable oil as additional carbon source. The chemical structure of the purified biosurfactant was identified as acidic diacetate sophorolipid through GC-MS analysis. This sophorolipid was used as a stabilizer for synthesis of zinc oxide nanoparticles (ZON). The formation of biofunctionalized ZON was characterized using UV-visible spectroscopy, XRD, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy. The antimicrobial activities of naked ZON and sophorolipid functionalized ZON were tested based on the diameter of inhibition zone in agar well diffusion assay, microbial growth rate determination, protein leakage analysis, and lactate dehydrogenase assay. Bacterial pathogen Salmonella enterica and fungal pathogen Candida albicans showed more sensitivity to sophorolipid biofunctionalized ZON compared with naked ZON. Among the two pathogens, S. enterica showed higher sensitivity towards sophorolipid biofunctionalized ZON. SEM analysis showed that cell damage occurred through cell elongation in the case of S. enterica, whereas cell rupture was found to occur predominantly in the case of C. albicans. This is the first report on the dual role of yeast-mediated sophorolipid used as a biostabilizer for ZON synthesis as well as a novel functionalizing agent showing antimicrobial property.

Effect of Nano Particles on the Hathcing rate of Artemia sp. Cyst Zooplankton (나노입자가 알테미아(Artemia sp.) Cyst 부화율에 미치는 영향)

  • Jeong, Yeon-Kyu;Lee, Byeong-Woo;Park, Chan-Il;Choi, Kwang-Soo;Kim, Mu-Chan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.4
    • /
    • pp.302-306
    • /
    • 2009
  • 9 kinds of nanoparticle used for this study was a particle with the size of less than 100 nm of diameter, and Artemia sp. cyst examined what kind of influence to have upon the process hatched out in nauplius. 82% hatched in nauplius at the opposition ward where a nanoparticle wasn't added after 24 time course. AGZ020, Nano silver, P-25, Sb and SnO nanoparticle showed hatching rate of 18%, 20%, 13%, 50% and 0% respectively by the 20mg/L density, and it became clear that a harmful effect is big, but I had a harmful effect compared with the opposition ward by 75%, 60%, 73% and 73% respectively by Ag-$TiO_2$, In, Sn and Zn nanoparticle, but a feeble thing was known relatively compared with AGZ020, Nano silver, P-25, Sb and SnO nanoparticle. The difference has caused this with the ingredient a nanoparticle has. Ag is included 2 % and AGZ020, Nano silver and P-25 nanoparticle are used widely as anti-fungus agent, and the SnO nanoparticle which became combination is a light catalyst pill, and oxygen is used for a Sn particle. This and others, a possibility that use is generalized and flows into aquatic environment in sequence the home electronics, functionality cosmetics, anti-fungus agent and a light catalyst pill at present becomes high for nanoparticles and others. The anxiety which has an influence on the ecology world in the water with this can be generated, so I'd have to study the potential danger a nanoparticle has continuously.

  • PDF

Solution-Processed Nontoxic and Abundant $Cu_2ZnSnS_4$ for Thin-Film Solar Cells

  • Mun, Ju-Ho
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.65-65
    • /
    • 2012
  • Copper zinc tin sulfide ($Cu_2ZnSnS_4$, CZTS) is a very promising material as a low cost absorber alternative to other chalcopyrite-type semiconductors based on Ga or In because of the abundant and economical elements. In addition, CZTS has a band-gap energy of 1.4~1.5eV and large absorption coefficient over ${\sim}10^4cm^{-1}$, which is similar to those of $Cu(In,Ga)Se_2$(CIGS) regarded as one of the most successful absorber materials for high efficient solar cell. Most previous works on the fabrication of CZTS thin films were based on the vacuum deposition such as thermal evaporation and RF magnetron sputtering. Although the vacuum deposition has been widely adopted, it is quite expensive and complicated. In this regard, the solution processes such as sol-gel method, nanocrystal dispersion and hybrid slurry method have been developed for easy and cost-effective fabrication of CZTS film. Among these methods, the hybrid slurry method is favorable to make high crystalline and dense absorber layer. However, this method has the demerit using the toxic and explosive hydrazine solvent, which has severe limitation for common use. With these considerations, it is highly desirable to develop a robust, easily scalable and relatively safe solution-based process for the fabrication of a high quality CZTS absorber layer. Here, we demonstrate the fabrication of a high quality CZTS absorber layer with a thickness of 1.5~2.0 ${\mu}m$ and micrometer-scaled grains using two different non-vacuum approaches. The first solution-processing approach includes air-stable non-toxic solvent-based inks in which the commercially available precursor nanoparticles are dispersed in ethanol. Our readily achievable air-stable precursor ink, without the involvement of complex particle synthesis, high toxic solvents, or organic additives, facilitates a convenient method to fabricate a high quality CZTS absorber layer with uniform surface composition and across the film depth when annealed at $530^{\circ}C$. The conversion efficiency and fill factor for the non-toxic ink based solar cells are 5.14% and 52.8%, respectively. The other method is based on the nanocrystal dispersions that are a key ingredient in the deposition of thermally annealed absorber layers. We report a facile synthetic method to produce phase-pure CZTS nanocrystals capped with less toxic and more easily removable ligands. The resulting CZTS nanoparticle dispersion enables us to fabricate uniform, crack-free absorber layer onto Mo-coated soda-lime glass at $500^{\circ}C$, which exhibits a robust and reproducible photovoltaic response. Our simple and less-toxic approach for the fabrication of CZTS layer, reported here, will be the first step in realizing the low-cost solution-processed CZTS solar cell with high efficiency.

  • PDF

Effect of Nano Particles on the Hathcing rate of Artemia sp. Cyst (알테미아(Artemia sp.) Cyst 부화율에 미치는 나노입자의 영향)

  • Lee, Byeong-Woo;Cho, Sang-Man;Park, Chan-Il;Jeong, Woo-Gun;Kim, Mu-Chan
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2008.05a
    • /
    • pp.137-141
    • /
    • 2008
  • 9 kinds of nanoparticle used for this study was a particle with the size of less than 100 nm of diameter, and Artemia sp. cyst examined what kind a influence to have upon the process hatched out in nauplius. 82% hatched in nauplius at the opposition ward where a nanoparticle wasn't added after 24 time course. AGZ020, Nano silver, P-25, Sb and SnO nanoparticle showed hatching rate of 18%, 20%, 13%, 50% and 0% respectively by the 20mg/L density, and it became clear that a harmful effect is big, but I had a harmful effect compared with the opposition ward by 75%, 60%, 73% and 73% respectively by Ag-$TiO_2$, In, Sn and Zn nanoparticle, but a feeble thing was known relatively compared with AGZ020, Nano silver, P-25, Sb and SnO nanoparticle. The difference was mused this with the ingredient a nanoparticle has. Ag is included 2% and AGZ020, Nano silver and P-25 nanoparticle are used widely as anti-fungus agent, and the SnO nanoparticle which became combination is a light catalyst pill, and oxygen is used for a Sn particle. This and others, a possibility that use is generalized and flows into aquatic environment in sequence the home electronics, functionality cosmetics, anti-fungus agent and a light catalyst pill at present becomes high for nanoparticles and others. The anxiety which has an influence on the ecology world in the water with this can be generated, so I'd have to study the potential danger a nanoparticle has continuously.

  • PDF