• Title/Summary/Keyword: ZnS Quantum dot

Search Result 60, Processing Time 0.029 seconds

Highly Luminescent Multi-shell Structured InP Quantum Dot for White LEDs Application

  • Kim, Gyeong-Nam;Jeong, So-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.531-531
    • /
    • 2012
  • So many groups have been researching the green quantum dots such as InP, InP/ZnS for overcoming the semiconductor nanoparticles composed with heavy metals like as Cd and Pb so on. In spite of much effort to keep up CdSe quantum dots, it does not reach the good properties compared with CdSe/ZnS quantum dots. This quantum dot has improved its properties through the generation of core/shell CdSe/ZnS structure or core/multi-shell structures like as CdSe/CdS/ZnS and CdSe/CdS/ CdZnS/ZnS. In this research, we try to synthesize the InP multi-shell structure by the successiveion layer absorption reaction (SILAR) in the one pot. The synthesized multi-shell structure has improved quantum yield and photo-stability. To generate white light, highly luminescent InP multi-shell quantum dots were mixed with yellow phosphor and integrated on the blue LED chip. This InP multi-shell improved red region of the LEDs and generated high CRI.

  • PDF

InP/ZnS Core/shell as Emitting Layer for Quantum Dot LED

  • Kwon, Byoung-Wook;Son, Dong-Ick;Lee, Bum-Hee;Park, Dong-Hee;Lim, Ki-Pil;Woo, Kyoung-Ja;Choi, Heon-Jin;Choi, Won-Kook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.451-451
    • /
    • 2012
  • Instead of a highly toxic CdSe and ZnScore-shell,InP/ZnSecore-shell quantum dots [1,2] were investigated as an active material for quantum dot light emitting diode (QD-LED). In this paper, aquantum dot light-emitting diode (QDLED), consisting of a InP/ZnS core-shell type materials, with the device structure of glass/indium-tin-oxide (ITO)/PEDOT:PSS/Poly-TPD/InP-ZnS core-shell quantum dot/Cesium carbonate(CsCO3)/Al was fabricated through a simple spin coating technique. The resulting InP/ZnS core-shell QDs, emitting near blue green wavelength, were more efficient than the above CdSe QDs, and their luminescent properties were comparable to those of CdSe QDs.Thebrightness ofInP/ZnS QDLED was maximumof 179cd/m2.

  • PDF

Characterization of the ZnSe/ZnS Core Shell Quantum Dots Synthesized at Various Temperature Conditions and the Water Soluble ZnSe/ZnS Quantum Dot

  • Hwang, Cheong-Soo;Cho, Ill-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1776-1782
    • /
    • 2005
  • ZnSe/ZnS, UV-blue luminescent core shell quantum dots, were synthesized via a thermal decomposition reaction of organometallic zinc and solvent coordinated Selenium (TOPSe) in a hot solvent mixture. The synthetic conditions of the core (ZnSe) and the shell (ZnS) were independently studied at various reaction temperature conditions. The obtained colloidal nanocrystals at corresponding temperatures were characterized for their optical properties by UV-vis, room temperature solution photoluminescence (PL) spectroscopy, and further obtained powders were characterized by XRD, TEM, and EDXS analyses. The synthetic temperature condition to obtain the best PL emission intensity for the ZnSe core was 300 ${^{\circ}C}$, and for the optimum shell capping, the temperature was 135 ${^{\circ}C}$. At this temperature, solution PL spectrum showed a narrow emission peak at 427 nm with a PL efficiency of 15%. In addition, the measured particle sizes for the ZnSe/ZnS nanocomposite via TEM were in the range of 5 to 12 nm. Furthermore, we have synthesized water-soluble ZnSe/ZnS nanoparticles by capping the ZnSe/ZnS hydrophobic surface with mercaptoacetate (MAA) molecules. For the obtained aqueous colloidal solution, the UV-vis spectrum showed an absorption peak at 250 nm, and the solution PL emission spectrum showed a peak at 425 nm, which is similar to that for hydrophobic quantum dot ZnSe/ZnS. However, the calculated PL efficiency was relatively low (0.1%) due to the luminescence quenching by water and MAA molecules. The capping ligand was also characterized by FT-IR spectroscopy, with the carbonyl stretching peak in the mercaptoacetate molecule appearing at 1575 $cm ^{-1}$. Finally, the particle sizes of the MAA capped ZnSe/ZnS were measured by TEM, showing a range of 12 to 17 nm.

Electrical and Optical Characteristics of QD-LEDs Using InP/ZnSe/ZnS Quantum Dot (InP/ZnSe/ZnS 양자점을 이용한 QD-LED의 전기 및 광학적 특성)

  • Choi, Jae-Geon;Moon, Dae-Gyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.3
    • /
    • pp.151-155
    • /
    • 2014
  • We have developed quantum dot light emitting diodes (QD-LEDs) using a InP/ZnSe/ZnS multi-shell QD emission layer. The hybrid structure of organic hole transport layer/QD/organic electron transport layer was used for fabricating QD-LEDs. Poly(4-butylphenyl-diphenyl-amine) (poly-TPD) and tris[2,4,6-trimethyl-3-(pyridin-3-yl)phenyl]borane (3TPYMB) molecules were used as hole-transporting and electron-transporting layers, respectively. The emission, current efficiency, and driving characteristics of QD-LEDs with 50, 65 nm thick 3TPYMB layers were investigated. The QD-LED with a 50 nm thick 3TPYMB layer exhibited a maximum current efficiency of 1.3 cd/A.

Display using the CdSe/ZnS Quantum Dot (CdSe/ZnS 양자점을 이용한 디스플레이)

  • Cho, Su-Young;Song, Jin-Won
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.8
    • /
    • pp.167-171
    • /
    • 2014
  • While the development of a portable plate panel display, thinning, high color reproduction, high brightness studies have been actively performed. LED, OLED is used as a light source. The research on quantum dot is much accomplished by the material of light source. Such quantum dot is the next generation semiconductor nano fluorescent substance because quantum dot has the high color reproduction and flexible display characteristic. In this study, we presented to method of using the quantum dot for implementation of the plate panel display. Quantum Dot (CdSe/ZnS), having a 100um thickness, is spread in PET barrier film. A Blue LED having a wavelength of 455nm as a light source irradiating light to the optical characteristic of the devices produced and evaluated. Also we presented the possibility for application with the color change film of the LCD.

Fabrication and Evaluation of CdS/ZnS Quantum Dot Based Plastic Scintillator (CdS/ZnS 양자점 기반 플라스틱 섬광체 제작 및 성능평가)

  • Min, Su Jung;Kang, Ha Ra;Lee, Byung Chae;Seo, Bum Kyung;Cheong, Jae Hak;Roh, Changhyun;Hong, Sang Bum
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.450-454
    • /
    • 2021
  • Currently, gamma nuclide analysis is mainly used using inorganic scintillators or semiconductor detectors. These detectors have high resolution but there are less economical, limited in size, and low process ability than plastic scintillators. Therefore, quantum dot-based plastic scintillator was developed using the advantages of the quantum dot nanomaterial and the conventional plastic scintillator. In this study, efficient plastic scintillator was fabricated by adding CdS/ZnS based on the most widely used Cd-based nanomaterial in a polystyrene matrix. In addition, the performance of the commercial plastic scintillator was compared and it was analyzed through radiological measurement experiments. The detection efficiency of fabricated plastic scintillator was higher than commercial plastic scintillator, EJ-200. It is believed that this fabricated plastic scintillator can be used as a radioactivity analyzer in the medical and nuclear facility fields.

Synthesis and analysis CdSe/ZnS quantum dot with a Core/shell Continuous Synthesis System Using a Microfluidic Reactor (미세유체반응기를 이용한 core/shell 연속 합성 시스템을 이용한 CdSe/ZnS 양자점 합성 및 분석)

  • Hong, Myung Hwan;Joo, So Young;Kang, Lee-Seung;Lee, Chan Gi
    • Journal of Powder Materials
    • /
    • v.25 no.2
    • /
    • pp.132-136
    • /
    • 2018
  • Core/shell CdSe/ZnS quantum dots (QDs) are synthesized by a microfluidic reactor-assisted continuous reactor system. Photoluminescence and absorbance of synthesized CdSe/ZnS core/shell QDs are investigated by fluorescence spectrophotometry and online UV-Vis spectrometry. Three reaction conditions, namely; the shell coating reaction temperature, the shell coating reaction time, and the ZnS/CdSe precursor volume ratio, are combined in the synthesis process. The quantum yield of the synthesized CdSe QDs is determined for each condition. CdSe/ZnS QDs with a higher quantum yield are obtained compared to the discontinuous microfluidic reactor synthesis system. The maximum quantum efficiency is 98.3% when the reaction temperature, reaction time, and ZnS/CdSe ratio are $270^{\circ}C$, 10 s, and 0.05, respectively. Obtained results indicate that a continuous synthesis of the Core/shell CdSe/ZnS QDs with a high quantum efficiency could be achieved by isolating the reaction from the external environment.

Development of ZnS/SiO2 Double Overlayers for the Enhanced Photovoltaic Properties of Quantum Dot-Sensitized Solar Cells (양자점 감응 태양전지의 광전 특성 향상을 위한 ZnS/SiO2 이중 오버레이어 개발)

  • SONG, INCHEUL;JUNG, SUNG-MOK;SEO, JOO-WON;KIM, JAE-YUP
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.6
    • /
    • pp.656-662
    • /
    • 2021
  • For the high efficiencies of quantum dot-sensitized solar cells (QDSCs), it is important to control the severe electron recombination at the interface of photoanode/electrolyte. In this work, we optimize the surface passivation process of ZnS/SiO2 double overlayers for the enhanced photovoltaic performances of QDSCs. The overlayers of zinc sulfide (ZnS) and SiO2 are coated on the surface of QD-sensitized photoanode by successive ionic layer adsorption and reaction (SILAR) method, and sol-gel reaction, respectively. In particular, for the sol-gel reaction of SiO2, the influences of temperature of precursor solution are investigated. By application of SiO2 overlayers on the ZnS-coated photoanode, the conversion efficiency of QDSCs is increased from 5.04% to 7.35%. The impedance analysis reveals that the electron recombination at the interface of photoanode/electrolyte is obviously reduced by the SiO2 overlayers.

Flexible quantum dot solar cells with PbS-MIx/PbS-BuDT bilayers

  • Choe, Geun-Pyo;Yang, Yeong-U;Yun, Ha-Jin;Im, Sang-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.347.2-347.2
    • /
    • 2016
  • Recently, in order to improve the performance of the colloidal quantum dot solar cells (CQDSCs), various efforts such as the modification of the cell architecture and surface treatment for quantum dot (QD) passivation have been made. Especially, the incorporation of halides into the QD matrix was reported to improve the performances significantly via passivating QD trap states that lower the life-time of the minority-carrier. In this work, we fabricated a lead sulfide (PbS) QD bilayer treated with different ligands and utilized it as a photoactive layer of the CQDSCs. The bottom and top PbS layer was treated using metal iodide ($MI_x$ and butanedithiol (BuDT), respectively. All the depositions and ligand treatments were carried out in air using layer-by-layer spin-coating process. The fabrication of the active layers as well as the n-type zinc oxide (ZnO) layer was successfully carried out on the bendable indium-tin-oxide (ITO)-coated polyethylene terephthalate (PET) substrate, which implies that this technique can be applied to the fabrication of flexible and/or wearable solar cells. The power conversion efficiency (PCE) of the CQDSCs with the architecture of $PET/ITO/ZnO/PbS-MI_x/PbS-BuDT/MoO_x/Ag$ reached 4.2 %, which is significantly larger than that of the cells with single QD (PbS-BuDT) layer.

  • PDF

Fabrication Process of Light Emitting Diodes Using CdSe/CdS/ZnS Quantum Dot

  • Cho, Nam Kwang;Kang, Seong Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.428-428
    • /
    • 2013
  • Red color light emitting diodes were fabricated using CdSe/CdS/ZnS quantum dots (QDs). Patterned indium-tin-oxide (ITO) was used as a transparent anode, and oxygen plasma treatment on a surface of ITO was performed. Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) was spin coated on the ITO surface as a hole injection layer. Then CdSe/CdS/ZnS QDs was spin coated and thermal treatment was performed for the cross-linking of QDs. TiO2 was coated on the QDs as an electron transport layer, and 150 nm of aluminum cathode was formed using thermal evaporator and shadow mask. The device shows a pure red color emission at 606 nm wavelength. Device characteristics will be presented in detail.

  • PDF