• Title/Summary/Keyword: ZnO-precursor

Search Result 142, Processing Time 0.019 seconds

Solution-Processed Fluorine-Doped Indium Gallium Zinc Oxide Channel Layers for Thin-Film Transistors (용액공정용 불소 도핑된 인듐 갈륨 징크 산화물 반도체의 박막 트랜지스터 적용 연구)

  • Jeong, Sunho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.3
    • /
    • pp.59-62
    • /
    • 2019
  • In this study, we have developed solution-processed, F-doped In-Ga-Zn-O semiconductors and investigated their applications to thin-film transistors. In order for forming the appropriate channel layer, precursor solutions were formulated by dissolving the metal salts in the designated solvent and an additive, ammonium fluoride, was incorporated additionally as a chemical modifier. We have studied thermal and chemical contributions by a thermal annealing and an incorporation of chemical modifier, from which it was revealed that electrical performances of the thin-film transistors comprising the channel layer annealed at a low temperature can be improved significantly along with an addition of ammonium fluoride. As a result, when the 20 mol% fluorine was incorporated into the semiconductor layer, electrical characteristics were accomplished with a field-effect mobility of $1.2cm^2/V{\cdot}sec$ and an $I_{on}/_{off}$ of $7{\times}10^6$.

Fabrication and Characterization of $CuInSe_2$Thin Films from $In_2Se_3$ and$Cu_2Se$Precursors ($In_2Se_3$$Cu_2Se$를 이용한 $CuInSe_2$박막제조 및 특성분석)

  • Heo, Gyeong-Jae;Gwon, Se-Han;Song, Jin-Su;An, Byeong-Tae
    • Korean Journal of Materials Research
    • /
    • v.5 no.8
    • /
    • pp.988-996
    • /
    • 1995
  • CuInSe$_2$this films as a light absorber layer were fabricated by vacuum evaporation using In$_2$Se$_3$and Cu$_2$Se precursors and their properties were analyzed. Indium selenide films of 0.5${\mu}{\textrm}{m}$ thickness were first deposited by vacuum evaporation of In$_2$Se$_3$ on a Corning 7059 glass substrate. The films deposited at suscepor temperature of 40$0^{\circ}C$ showed a flat surface morphology with densely Packed grain structure. CuInSe$_2$films directly formed by evaporating Cu$_2$Se on the predeposited In$_2$Se$_2$films also showed a very flat surface when the susceptor temperature was $700^{\circ}C$. Cu$_2$Se, a second phase in the CuInSe$_2$film, was removed by evaporating additional In$_2$Se$_3$on the CuInSe$_2$film at $700^{\circ}C$. The grain size of 1.2${\mu}{\textrm}{m}$ thick CuInSe$_2$, film was about 2${\mu}{\textrm}{m}$ and the film had a (112) preferred orientation. As the amount of deposited In$_2$Se$_3$increased, the electrical resistivity of CuInSe$_2$films increased because of the decrease of hole concentration. But the optical band gap was almost constant at the value of 1.04eV, The CuInSe$_2$film grown on a Mo/glass substrate had a similar smooth microstructure compared to that on a glass substrate. A solar cell with ZnO/CdS/CuInSe$_2$/Mo structure may be realized based on the above CuInSe$_2$films.

  • PDF