• Title/Summary/Keyword: ZnO piezoelectric

Search Result 162, Processing Time 0.021 seconds

Electrical properties of Step -Down Multilayer Piezoelectric transformer sintered at $900^{\circ}C$ Low Temperature ($900^{\circ}C$ 저온에서 소결된 깅압용 적층 압전 변압기의 전기적 특성)

  • Lee, Kba-Soo;Yoo, Ju-Hyun;Kim, In-Sung;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.16-16
    • /
    • 2010
  • The multilayer piezoelectric transformer was manufactured using $Pb(Zn_{1/2}W_{1/2})O_3-Pb(Mn_{1/3}Nb_{2/3})O_3-Pb(Zr_{0.48}Ti_{0.52})O_3$ (abbreviated as PZW-PMN-PZT) ceramics and their electrical properties were investigated. The $k_{eff}$ of the input and the output calculated from the resonant and anti-resonant frequencies were 0.403 and 0.233, respectively. The voltage step-up ratio showed the maximum value in the vicinity of 81kHz. The multilayer piezoelectric transformer showed the temperature rise of about $36^{\circ}C$ at the output power of 12w.

  • PDF

A properties of ZnO thin film deposited by magnetron sputtering and its resistivity and microstructure due to annealing (Magnetron sputtering으로 증착한 ZnO 박막의 특성과 열처리에 따른 비저항과 미세구조)

  • 이승환;성영권;김종관
    • Electrical & Electronic Materials
    • /
    • v.10 no.2
    • /
    • pp.126-133
    • /
    • 1997
  • In order to apply for the gas sensing layer and the piezoelectric thin film devices, we studied the effects of magnetron sputtering conditions and annealing temperature on the electrical and structual characteristics of the ZnO thin film. The optimal deposition conditions, in order to obtain a c axis of the ZnO (002) phase thin film which is perpendicular to SiO$_{2}$/Si substrate, were like these ; substrate temperature 150.deg. C, chamber pressure 2 mtorr, R.F. power 300 watts, gas flow ratio 0.4[O$_{2}$(Ar + $O_{2}$)]. When the ZnO thin film was annealed in 600.deg. C, $O_{2}$ gas ambient for 1 hr, the resistivity was 2.6 x 10$^{2}$.ohm.cm and the grain size of ZnO thin film was less than 1 .mu.m. So the ZnO thin film acquired from above conditions can apply for the gas sensing layer which require a c axis perpendicular to the substrate surface.

  • PDF

Synthesis of functional ZnO nanoparticles and their photocatalytic properties

  • Nam, Sang-Hun;Kim, Myoung-Hwa;Lee, Sang-Duck;Kim, Min-Hee;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.54-54
    • /
    • 2010
  • Zinc oxide is metal oxide semiconductor with the 3.37 eV bandgap energy. Zinc oxide is very attractive materials for many application fields. Zinc Oxide has many advantages such as high conductivity and good transmittance in visible region. Also it is cheaper than other semiconductor materials such as indium tin oxide (ITO). Therefore, ZnO is alternative material for ITO. ZnO is attracting attention for its application to transparent conductive oxide (TCO) films, surface acoustic wave (SAW), films bulk acoustic resonator (FBAR), piezoelectric materials, gas-sensing, solar cells and photocatalyst. In this study, we synthesized ZnO nanoparticles and defined their physical and chemical properties. Also we studied about the application of ZnO nanoparticles as a photocatalyst and try to find a enhancement photocatalytic activity of ZnO nanorticles.. We synthesized ZnO nanoparticles using spray-pyrolysis method and defined the physical and optical properties of ZnO nanoparticles in experiment I. When the ZnO are exposed to UV light, reduction and oxidation(REDOX) reaction will occur on the ZnO surface and generate ${O_2}^-$ and OH radicals. These powerful oxidizing agents are proven to be effective in decomposition of the harmful organic materials and convert them into $CO_2$ and $H_2O$. Therefore, we investigated that the photocatalytic activity was increased through the surface modification of synthesized ZnO nanoparticles. In experiment II, we studied on the stability of ZnO nanoparticles in water. It is well known that ZnO is unstable in water in comparison with $TiO_2$. $Zn(OH)_2$ was formed at the ZnO surface and ZnO become inactive as a photocatalyst when ZnO is present in the solution. Therefore, we prepared synthesized ZnO nanoparticles that were immersed in the water and dried in the oven. After that, we measured photocatalytic activities of prepared samples and find the cause of their photocatalytic activity changes.

  • PDF

Structural and Magnetic Properties of LiZnO Added MgFe2O4 Composite

  • Tadi, Ravindar;Kim, Yong-Il;Kim, Cheol-Gi;Ryu, Kwon-Sang
    • Journal of Magnetics
    • /
    • v.15 no.4
    • /
    • pp.165-168
    • /
    • 2010
  • $Li_{0.1}Zn_{0.9}O$ and $MgFe_2O_4$ powders were synthesized using chemical methods and mixed in different proportions to prepare a mixture of $Li_{0.1}Zn_{0.9}O$ and $MgFe_2O_4$ that was thermally treated between 900 to $1100^{\circ}C$ for 1 hour. Structural characterization was done using X-ray powder diffraction measurements. Grain sizes and morphologies of $Li_{0.1}Zn_{0.9}O$, $MgFe_2O_4$, and $Li_{0.1}Zn_{0.9}O+MgFe_2O_4$ samples were observed using a scanning electron microscope. Variation of magnetic properties of the $Li_{0.1}Zn_{0.9}O+MgFe_2O_4$ samples due to the addition of $Li_{0.1}Zn_{0.9}O$ was studied in relation to the structural changes occurring due to the thermal treatment. In particular, changes in the cationic distribution between the tetrahedral and octahedral positions were studied with respect to the increase of the annealing temperature. Magnetization was found to be dependent on the cations distributed in the tetrahedral and octahedral sites of the $MgFe_2O_4$.

Piezoelectric Properties of 0.65Pb(Zr1-xTix)O3-0.35Pb(Zn1/6Ni1/6Nb2/3)O3 Ceramics and Their Application to Piezoelectric Energy Harvester (0.65Pb(Zr1-xTix)O3-0.35Pb(Zn1/6Ni1/6Nb2/3)O3 세라믹의 압전 특성 및 압전 에너지 하베스터 적용)

  • Jo, Sora;Kim, Daesu;Cho, Yuri;Son, Sin Joong;Kang, Hyung-Won;Nahm, Sahn;Han, Seung Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.4
    • /
    • pp.216-220
    • /
    • 2018
  • The piezoelectric properties of $0.65Pb(Zr_{1-x}Ti_x)O_3-0.35Pb(Zn_{1/6}Ni_{1/6}Nb_{2/3})O_3$ ($PZT_x-PZNN$) ceramics with $0.530{\leq}x{\leq}0.555$ were investigated for application to piezoelectric energy harvesters. Although a morphotropic phase boundary (MPB) was found at approximately x = 0.545, the ceramic with the highest figure of merit (FOM) ($d_{33}{\times}g_{33}$) was observed at a composition of x = 0.540. Values of this figure of merit, $d_{33}{\times}g_{33}$, of $19.6pm^2/N$ and $20.2pm^2/N$ were obtained from $PZT_{0.540}-PZNN$ ceramics sintered at $920^{\circ}C$ and $950^{\circ}C$, respectively. A high output power of $937{\mu}W$ and a high power density of $3.3mW/cm^3$ were obtained from unimorph-type piezoelectric energy harvesters fabricated using $PZT_{0.540}-PZNN$ ceramic sintered at $920^{\circ}C$ for 4h.

A Study on the ZnO Piezoelectric Thin Film SAW Filter for High Frequency (ZnO 압전 박막을 이용한 고주파 SAW 필터 연구)

  • 박용욱;신현용
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.6
    • /
    • pp.547-552
    • /
    • 2003
  • ZnO thin films on glass substrate were deposited by RF magnetron reactive sputtering at 100 W, 1.33 Pa, Ar/O2=50 : 50, 200$^{\circ}C$, and a target/substrate distance of 4 cm. Crystallinities, surface morphologies, chemical compositions, and electrical properties of the films were investigated by XRD, SEM, AFM, RBS, and electrometer. All films showed a strong preferred c-axis orientation and the chemical stoichiometry. The propagation velocity of ZnO/IDT/glass of single electrode and double electrode types SAW filter was about 2,589 m/sec, 2,533 m/sec and insertion loss was a minimum value of about -11 dB and -21 dB, respectively.

The Etching Characteristics of ZnO thin Films using $BCl_3/Ar$ Inductively Coupled Plasma ($BCl_3/Ar$ 유도 결합 플라즈마를 이용한 ZnO 박막의 식각 특성)

  • Woo, Jong-Chang;Kim, Gwan-Ha;Kim, Kyoung-Tae;Kim, Jong-Gyu;Kang, Chan-Min;Kim, Chang-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.566-570
    • /
    • 2007
  • The specific electrical, optical and acoustic properties of Zinc Oxide (ZnO) are important for semiconductor process which has many various applications. Piezoelectric ZnO films has been widely used for such as transducers, bulk and surface acoustic-wave resonators, and acousto-optic devices. In this study, we investigated etch characteristics of ZnO thin films in inductively coupled plasma etch system with $BCl_3/Ar$ gas mixture. The etching characteristics of ZnO thin films were investigated in terms of etch rates and selectivities to $SiO_2$ as a function of $BCl_3/Ar$ gas mixing ratio, RF power, DC bias voltage and process pressure. The maximum ZnO etch rate of 172 nm/min was obtained for $BCl_3$ (80%)/Ar(20%) gas mixture. The chemical states on the etched surface were investigated with X-ray photoelectron spectroscopy (XPS).

Fabrication of Poly(Vinylidene Fluoride) Nanocomposite Fibers Containing Zinc Oxide Nanoparticles and Silver Nanowires and their Application in Textile Sensors for Motion Detection and Monitoring (산화아연(Zinc oxide) 나노입자와 은나노 와이어(Silver nanowire)를 함유한 Poly(vinylidene fluoride) 복합나노섬유 제조 및 동작 센서로의 적용 가능성 탐색)

  • Hyukjoo Yang;Seungsin Lee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.47 no.3
    • /
    • pp.577-592
    • /
    • 2023
  • In this study, nanofiber-based textile sensors were developed for motion detection and monitoring. Poly(vinylidene fluoride) (PVDF) nanofibers containing zinc oxide (ZnO) nanoparticles and silver nanowires (AgNW) were fabricated using electrospinning. PVDF was chosen as a piezoelectric polymer, zinc oxide as a piezoelectric ceramic, and AgNW as a metal to improve electric conductivity. The PVDF/ZnO/AgNW nanocomposite fibers were used to develop a textile sensor, which was then incorporated into an elbow band to develop a wearable smart band. Changes in the output voltage and peak-to-peak voltage (Vp-p) generated by the joint's flexion and extension were investigated using a dummy elbow. The β-phase crystallinity of pure PVDF nanofibers was 58% when analyzed using Fourier transform infrared spectroscopy; however, the β-phase crystallinity increased to 70% in PVDF nanofibers containing ZnO and to 78% in PVDF nanocomposite fibers containing both ZnO and AgNW. The textile sensor's output voltage values varied with joint-bending angle; upon increasing the joint angle from 45° to 90° to 150°, the Vp-p value increased from 0.321 Vp-p to 0.542 Vp-p to 0.660 Vp-p respectively. This suggests that the textile sensor can be used to detect and monitor body movements.

Micromachined ZnO Piezoelectric Pressure Sensor and Pyroelectric Infrared Detector in GaAs

  • Park, Jun-Rim;Park, Pyung
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.2
    • /
    • pp.239-244
    • /
    • 1998
  • Piezoelectric pressure sensors and pyroelectric infrared detectors based on ZnO thin film have been integrated with GaAs metal-semiconductor field effect transistor (MESFET) amplifiers. Surface micromachining techniques have been applied in a GaAs MESFET process to form both microsensors and electronic circuits. The on-chip integration of microsensors such as pressure sensors and infrared detectors with GaAs integrated circuits is attractive because of the higher operating temperature up to 200 oC for GaAs devices compared to 125 oC for silicon devices and radiation hardness for infrared imaging applications. The microsensors incorporate a 1${\mu}$m-thick sputtered ZnO capacitor supported by a 2${\mu}$m-thick aluminum membrane formed on a semi-insulating GaAs substrate. The piezoelectric pressure sensor of an area 80${\times}$80 ${\mu}$m2 designed for use as a miniature microphone exhibits 2.99${\mu}$V/${\mu}$ bar sensitivity at 400Hz. The voltage responsivity and the detectivity of a single infrared detector of an area 80${\times}$80 $\mu\textrm{m}$2 is 700 V/W and 6${\times}$108cm$.$ Hz/W at 10Hz respectively, and the time constant of the sensor with the amplifying circuit is 53 ms. Circuits using 4${\mu}$m-gate GaAs MESFETs are fabricated in planar, direct ion-implanted process. The measured transconductance of a 4${\mu}$m-gate GaAs MESFET is 25.6 mS/mm and 12.4 mS/mm at 27 oC and 200oC, respectively. A differential amplifier whose voltage gain in 33.7 dB using 4${\mu}$m gate GaAs MESFETs is fabricated for high selectivity to the physical variable being sensed.

  • PDF

The magnetic properties of optical Quantum transitions of electron-piezoelectric potential interacting systems in CdS and ZnO

  • Lee, Su Ho
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.61-67
    • /
    • 2018
  • We investigated theoretically the magnetic field dependence of the quantum optical transition of qusi 2-Dimensional Landau splitting system, in CdS and ZnO. In this study, we investigate electron confinement by square well confinement potential in magnetic field system using quantum transport theory(QTR). In this study, theoretical formulas for numerical analysis are derived using Liouville equation method and Equilibrium Average Projection Scheme (EAPS). In this study, the absorption power, P (B), and the Quantum Transition Line Widths (QTLWS) of the magnetic field in CdS and ZnO can be deduced from the numerical analysis of the theoretical equations, and the optical quantum transition line shape (QTLS) is found to increase. We also found that QTLW, ${\gamma}(B)_{total}$ of CdS < ${\gamma}(B)_{total}$ of ZnO in the magnetic field region B<25 Tesla.