• 제목/요약/키워드: ZnO piezoelectric

검색결과 162건 처리시간 0.028초

금속 기판적용을 통한 ZnO 나노로드기반 나노제너레이터 제조 (Fabrication of ZnO Nanorod based Robust Nanogenerator Metal Substrate)

  • 백성호;박일규
    • 한국분말재료학회지
    • /
    • 제22권5호
    • /
    • pp.331-336
    • /
    • 2015
  • We report on the succesful fabrication of ZnO nanorod (NR)-based robust piezoelectric nanogenerators (PNGs) by using Cu foil substrate. The ZnO NRs are successfully grown on the Cu foil substrate by using all solution based method, a two step hydrothermal synthesis. The ZnO NRs are grown along c-axis well with an average diameter of 75~80 nm and length of $1{\sim}1.5{\mu}m$. The ZnO NRs showed abnormal photoluminescence specrta which is attributed from surface plasmon resonance assistant enhancement at specific wavelength. The PNGs on the SUS substrates show typical piezoelectric output performance which showing a frequency dependent voltage enhancement and polarity dependent charging and discharging characteristics. The output voltage range is 0.79~2.28 V with variation of input strain frequency of 1.8~3.9 Hz. The PNG on Cu foil shows reliable output performance even at the operation over 200 times without showing degradation of output voltage. The current output from the PNG is $0.7{\mu}A/cm^2$ which is a typical out-put range from the ZnO NR-based PNGs. These performance enhancement is attributed from the high flexibility, high electrical conductivity and excellent heat dissipation properties of the Cu foil as a substrate.

Low-Temperature Sintering and Piezoelectric Properties of $(Na_{0.5}K_{0.5})NbO_3$ Lead-Free Piezoelectric Ceramics

  • Seo, In-Tae;Park, Hwi-Yeol;Choi, Jae-Hong;Nahm, Sahn
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 춘계학술회의 초록집
    • /
    • pp.5-5
    • /
    • 2010
  • $(Na_{0.5}K_{0.5})NbO_3$ (NKN) ceramic with 1.5 mol% CuO added (NKNC) was well sintered even at a low temperature of $900^{\circ}C$ with the addition of ZnO. Most of the ZnO reacted with the CuO and formed the liquid phase that assisted the densification of the specimens at $900^{\circ}C$. A few $Zn^{2+}$ ions entered the matrix of the specimens and increased the coercive field ($E_c$) and $Q_m$ values of the specimens. High-piezoelectric properties of $k_p=0.37$, $Q_m=755$, and ${\varepsilon}_3\;^T/{\varepsilon}_0=327$ were obtained from the NKNC ceramics containing 1.0 mol% ZnO sintered at $900^{\circ}C$ for 2 h.

  • PDF

Post-annealing 방법으로 제작된 저온소결 Pb(Zn1/2W1/2)O3-Pb(Mn1/2Nb2/3)O3-Pb(Zr0.48Ti0.52)O3 세라믹의 압전 및 유전특성 (Piezoelectric and Dielectric Properties of Low Temperature Sintering Pb(Zn1/2W1/2)O3-Pb(Mn1/2Nb2/3)O3-Pb(Zr0.48Ti0.52)O3 Ceramics Manufactured by Post-annealing Method)

  • 류주현;이갑수
    • 한국전기전자재료학회논문지
    • /
    • 제21권3호
    • /
    • pp.227-231
    • /
    • 2008
  • In this study, in order to improve the electrical properties of low temperature sintering piezoelectric ceramics, $[0.05Pb(Zn_{1/2}W_{1/2})-0.07Pb(Mn_{1/3}Nb_{2/3})-0.088Pb(Zr_{0.48}Ti_{0.52})]O_3$(abbreviated as PZW-PMN-PZT) ceramic systems were fabricated using $Bi_2O_3$, CuO and $Li_2CO_3$ as sintering aids and then their piezoelectric and dielectric properties were investigated according to the amount of $Li_2CO_3$ and post-annealing process. Post-annealing process enhanced all physical properties except for mechanical quality factor (Qm). 0.2 wt% $Li_2CO_3$ added and post-annealed specimen showed the excellent values suitable for low loss piezoelectric actuator application as follow: the density = 7.86 $g/cm^3$ electromechanical coupling factor (kp) = 0.575, piezoelectric constant $d_{33}$ = 370 pC/N, dielectric constant ($\varepsilon_r$) = 1546, and mechanical quality factor (Qm) = 1161, respectively.

Power Enhance Effect on the Hybrid Cell Based on Direct Current Nanogenerator and an Organic Photovoltaic Device

  • 윤규철;신경식;이근영;이주혁;김상우
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.298-298
    • /
    • 2013
  • Finding renewable and clean energy resources is essential research to solve global warming and depletion of fossil fuels in modern society. Recently, complex harvesting of energy from multiple sources is available in our living environments using a single device has become highly desirable, representing a new trend in energy technologies. We report that when simultaneously driving the fusion and composite cells of two or more types, it is possible to make an affect the other cells to obtain a greater synergistic effect. To understand the coupling effect of photovoltaic and piezoelectric device, we fabricate the serially integrated hybrid cell (s-HC) based on organic solar cell (OSC) and piezoelectric nanogenerator (PNG). The size of increased voltage peaks when OSC and PNG are working on is larger than the case when only PNG is working. This voltage difference is the Voc change of OSC, not the voltage change of PNG and current density difference between these two cases is manifested more clearly. When the OSC and PNG are working in s-HC at the same time, piezoelectric potential (VPNG) is generated in ZnO and theoretical total voltage is sum of voltage of an OSC (VOSC) and VPNG. However, electrons from OSC are influenced by piezoelectric potential in ZnO and current loss of OSC in whole circuit decreases. As a result, VOSC increases temporarily. Current shows the similar behavior. PNG acts a resistance in the whole circuit and current loss occurs when the electrons from OSC pass through the PNG. But piezoelectric potential recover current loss and decrease the resistance of PNG. Our PNG can maintain piezoelectric potential when the strain is held owing to the LDH layer while general PNG cannot maintain piezoelectric potential. During the section that strain is held, voltage enhancement effect is maintained and same effect appeared even turn off the light. Actually at this time, electrons in ZnO nanosheets move to LDH and trapped by the positive charges in this layer. After this strain is held, piezoelectric potential of ZnO nanosheets is disappeared but potential difference which is developed by negative charge dominant LDH layer is remained. This potential acts similar role like piezoelectric potential in ZnO. Electrons from the OSC also are influenced by this potential and the more current flows.

  • PDF

Piezoelectric and Dielectric Properties of Low Temperature Sintering Pb(Zn1/2W1/2)O3-Pb(Mn1/3Nb2/3)O3-Pb(Zr,Ti)O3 Ceramics

  • Yoo, Ju-Hyun;Lee, Kab-Soo;Lee, Su-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • 제9권3호
    • /
    • pp.91-95
    • /
    • 2008
  • In this study, in order to develop the composition ceramics for low loss multilayer piezoelectric actuator application, $Pb(Zn_{1/2}W_{1/2})O_3-Pb(Mn_{1/3}Nb_{2/3})O_3-Pb(Zr,Ti)O_3$ (abbreviated as PZW-PMN-PZT)ceramics according to the amount of $MnO_2$ addition were fabricated using two-stage calcinations method. And also, their dielectric and piezoelectric properties were investigated. At the 0.2 wt% $MnO_2$ added PZW-PMN-PZT ceramics sintered at $930^{\circ}C$, density, electromechanical coupling factor $k_p$, dielectric constant ${\varepsilon}_r$, piezoelectric $d_{33}$ constant and mechanical quality factor $Q_m$ showed the optimum value of $7.84g/cm^3$, 0.543, 1,392, 318.7 pC/N, 1,536, respectively for low loss multilayer ceramics actuator application.

Pb(Zn, Nb)$O_3$-Pb(Ni, Nb))$O_3$-$PbTiO_3$-$PbZrO_3$계 세라믹스의 소결 및 전기적 특성 (Sintering and Electric Prooperties of Pb(Zn, Nb)$O_3$-Pb(Ni, Nb))$O_3$-$PbTiO_3$-$PbZrO_3$ System)

  • 박재성;이기태;남효덕
    • 한국세라믹학회지
    • /
    • 제27권7호
    • /
    • pp.934-942
    • /
    • 1990
  • The quarternary system ceramics 0.5[yPb(Zn1/3Nb2/3)O3-(1-y)Pb(Ni1/3Nb2/3)O3]-0.5[xPbTiO3-(1-x)PbZrO3](PZN-PNN-PT-PZ) was fabricated by the columbite precursor method to obtain a stabilized perovskite structure and by conventional method to evaluate the efficiency of the former methd. Dielectric and piezoelectric properties were investigated and the stability of the perovskite phase was studied as a function of PZN and PT contents and firing temperature. In the samples prepared by the columbite precursor method, the pyrochlore phase, which is detrimental to both the dielectric and piezoelectric properties, was not observed in the absence of PZN, and electric properties were improved even when fabricated at low temperature. By adding PZN, some pyrochlore phase appeared and the morphotropic phase boundary of the samples shifted to more Zr-rich composition. The temperature dependence of piezoelectric constant decreased with the addition of PZN, due to the rising of the Curie point.

  • PDF

Sensitivity Improvement and Operating Characteristics Analysis of the Pressure Sensitive Field Effect Transistor(PSFET) Using Highly-Oriented ZnO Piezoelectric Thin Film

  • 이정철;조병욱;김창수;남기홍;권대혁;손병기
    • 센서학회지
    • /
    • 제6권3호
    • /
    • pp.180-187
    • /
    • 1997
  • We demonstrate the improvement of sensitivity and analysis of operating characteristics of the piezoelectric pressure sensor using ZnO piezoelectric thin film and FET(field effect transistor) for sensing applied pressure and transforming the pressure into electrical signals, respectively. The sensitivity of the PSFET(pressure sensitive field effect transistor) was improved by using highly-oriented ZnO film perpendicular to the substrate surface and the operating characteristics was investigated by monitoring output voltage with time in various static pressure levels.

  • PDF

Experimental study for ZnO nanofibers effect on the smart and mechanical properties of concrete

  • Arbabi, Amir;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Smart Structures and Systems
    • /
    • 제25권1호
    • /
    • pp.97-104
    • /
    • 2020
  • Due to the superior properties of nanoparticles, using them has been increased in concrete production technology. In this study, the effect of zinc oxide (ZnO) nanoparticles on the mechanical and smart properties of concrete was studied. At the first, the ZnO nanoparticles are dispersed in water using shaker, magnetic stirrer and ultrasonic devices. The nanoparticles with 3.5, 0.25, 0.75, and 1.0 volume percent are added to the concrete mixture and replaced by the appropriate amount of cement to compare with the control sample without any additives. In order to study the mechanical and smart properties of the concrete, the cubic samples for determining the compressive strength and cylindrical samples for determining tensile strength with different amounts of ZnO nanoparticles are produced and tested. The most important finding of this paper is about the smartness of the concrete due to the piezoelectric properties of the ZnO nanoparticles. In other words, the concrete in this study can produce the voltage when subjected to mechanical load and vice versa it can induce the mechanical displacement when subjected to external voltage. The experimental results show that the best volume percent for ZnO nanoparticles in 28-day samples is 0.5%. In other words, adding 0.5% ZnO nanoparticles to the concrete instead of cement leads to increases of 18.70% and 3.77% in the compressive and tensile strengths, respectively. In addition, it shows the best direct and reverse piezoelectric properties. It is also worth to mention that adding 3.5% zinc oxide nanoparticles, the setting of cement is stopped in the concrete mixture.

Novel Enhanced Flexibility of ZnO Nanowires Based Nanogenerators Using Transparent Flexible Top Electrode

  • 강물결;하인호;김성현;조진우;주병권;이철승
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.490.1-490.1
    • /
    • 2014
  • The ZnO nanowire (NW)-based nanogenerators (NGs) can have rectifying current and potential generated by the coupled piezoelectric and semiconducting properties of ZnO by variety of external stimulation such as pushing, bending and stretching. So, ZnO NGs needed to enhance durability for stable properties of NGs. The durability of the metal electrodes used in the typical ZnO nanogenerators(NGs) is unstable for both electrical and mechanical stability. Indium tin oxide (ITO) is used as transparent flexible electrode but because of high cost and limited supply of indium, the fragility and lack of flexibility of ITO layers, alternatives are being sought. It is expected that carbon nanotube and Ag nanowire conductive coatings could be a prospective replacement. In this work, we demonstrated transparent flexible ZnO NGs by using CNT/Ag nanowire hybrid electrode, in which electrical and mechanical stability of top electrode has been improved. We grew vertical type ZnO NW by hydrothermal method and ZnO NW was coated with hybrid silicone coating solution as capping layer to enhance adhesion and durability of ZNW. We coated the CNT/Ag nanowire hybrid electrode by using bar coating system on a capping layer. Power generation of the ZnO NG is measured by using a picoammeter, a oscilloscope and confirmed surface condition with FE-SEM. As a results, the NGs using the CNT/Ag NW hybrid electrode show 75% transparency at wavelength 550 nm and small change of the resistance of the electrode after bending test. It will be discussed the effect of the improved flexibility of top electrode on power generation enhancement of ZnO NGs.

  • PDF

$Pb(Zn_{1/3}Nb_{2/3})O_3-Pb(Fe_{1/2}Nb_{1/2})O}3$ 계에서의 초전성질에 관한 연구 (Pyroelectric Properties of $Pb(Zn_{1/3}Nb_{2/3})O_3-Pb(Fe_{1/2}Nb_{1/2})O}3$ Ceramics)

  • 김정욱;최성철;이응상
    • 한국세라믹학회지
    • /
    • 제32권6호
    • /
    • pp.748-760
    • /
    • 1995
  • Pyroelectric properties, figure of merits, and the other properties of the Pb(Zn1/3Nb2/3)O3-Pb(Fe1/2Nb1/2)O3 system, as expected to have excellent pyroelectric properties in the operating temperature range of pyroelectric type infrared sensor, were investigated. In the Pb(Zn1/3Nb2/3)O3-Pb(Fe1/2Nb1/2)O3 system, suppression of the pyrochlore phase depended on sintering condition, as like sintering temperature, holding time, sintering atmosphere. The specimen, sintered by the same composition atmosphere powder at 105$0^{\circ}C$ for 1.5h, possessed the best physical property. It was found that the piezoelectric parameters were mainly depended on the amount of spontaneous polarization and then the 0.2PZN-0.8PFN showed the best pyro- and piezoelectric properties. In terms of the experimental method, two pyroelectric-testing methods, i.e. static and dynamic methods, had a same tendency. Also the result of pyroelectric testing by the static method indicated that the diffuse phase transitiion resulted in the temperature difference of phase transition between dielectric constant and pyroelectric coefficient.

  • PDF