• Title/Summary/Keyword: ZnO nanowires

Search Result 149, Processing Time 0.024 seconds

Density control of ZnO nanowires using PDOT:PSS (PDOT:PSS를 이용한 ZnO 나노선의 밀도조절)

  • No, I.J.;Shin, P.K.
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1451-1452
    • /
    • 2011
  • ZnO 나노선을 수열합성법을 이용하여 합성 하였다. ZnO 나노선을 이용하여 고효울 소자 제작하기 위해 반듯이 필요한 조건인 밀도 조절을 위해 PDOT:PSS를 에어브로쉬를 이용하여 분사하여 Dot의 형태로 열처리 한후 나노선을 합성 하였고 SEM 이미지를 통하여 밀도가 조절된 것을 확인 하였다.

  • PDF

Novel P(VDF-TrFE) Polymer Electrolytes: Their Use in High-Efficiency, All-Solid-State Electrochemical Capacitors Using ZnO Nanowires

  • Park, Young Jun;Bae, Joonho
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.126-132
    • /
    • 2018
  • For the first time, an innovative approach using P(VDF-TrFE) as a polymer electrolyte for high efficiency, all-solid-state supercapacitors is presented. The polymer electrolyte was successfully achieved by dissolving P(VDF-TrFE) copolymers in dimethylformamide (DMF). Thermal analysis and infrared spectroscopy revealed excellent thermal stability up to $400^{\circ}C$ and copolymer's interaction with DMF. Electrochemical capacitors fabricated using P(VDF-TrFE) in DMF and ZnO NWs demonstrated high capacitive performance. Furthermore, the gel electrolyte-based supercapacitors demonstrated excellent mechanical durability up to a bend angle of $120^{\circ}$. Novel P(VDF-TrFE) electrolytes could be a promising approach for applications in flexible, fabric-based, and high-efficiency energy devices.

Morphology Control of Ag-doped ZnO Nanowires by Hot-walled pulse Laser Deposition

  • Kim, Gyeong-Won;Song, Yong-Won;Kim, Sang-Sik;Lee, Sang-Ryeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.25-26
    • /
    • 2009
  • We design and demonstrate the controlled morphologies of Ag-dpped ZnO nanowires (NWs) adopting self-contrived hot-walled pulsed laser deposition (HW-PLD). p-type Ag-doping is ensuired by low temperature photoluminescence (PL) spectrum to find the AoX peak at 3.349 eV. Morphology of grown NWs are controlled by changing the kinetic energy and flux of the ablated particles with adjusting the target - substrate (T-S) distance. The analysis on the resultant NWs is presented.

  • PDF

Doping Control in ZnO Nanowires Employing Hot-Walled Pulsed Laser Deposition (Hot-Walled PLD를 이용한 ZnO 나노와이어의 도핑 제어)

  • Kim, Kyung-Won;Lee, Se-Han;Song, Yong-Won;Kim, Sang-Sig;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.5-5
    • /
    • 2008
  • We design and demonstrate the controled doping into ZnO nanowires (NWs) adopting self-contrived hot-walled pulsed laser deposition (HW-PLD). Optimized synthesis conditions with the diversified dopants guarantee the excellent crystalinity and morphology as well as electrical properties of the NWs. Proprietary target rotating system in the HW-PLD fuels the controlled formation and doping of the NWs. Prepared NWs sensitive to the environment are systematically characterized, and the doping mechanism is discussed.

  • PDF

Growth characterization of ZnO nanowires grown on thermally annealed silver thin film as a masking layer by hydrothermal method

  • Kim, Jong-Hyeon;Kim, Seong-Hyeon;No, Im-Jun;Jeong, Dae-Yong;Jo, Jin-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.475-475
    • /
    • 2011
  • 현재 수열합성법으로 이용하여 1차원으로 수직 성장한 ZnO 나노와이어는 밴드 갭이 3.37ev로 큰 밴드 갭을 갖는 물질이며 밀도 조절이 매우 어려운 것으로 알려져 있다. ZnO 나노와이어는 기존의 리소그래피 기반을 둔 Top-Down 방식과 달리 자발적인 형성과정으로 높은 결정성을 가지게 되는데, 이는 ZnO 나노와이어가 큰 종횡비 와 전자친화도를 가지고 있어 높은 전계방출 효과를 기대하게 되는 부분이다. 본 연구에서는 실버를 열처리하여 형성된 실버 나노파티클을 마스킹층으로 사용하여 ZnO 나노와어의 밀도 조절을 하고자 하였다. 실버막을 AZO seed layer 기판 위에 증착한뒤 $200{\sim}600^{\circ}C$ 까지 열처리 후 수열합성법을 이용하여 ZnO nanowire를 성장하였다. 또한 전구체인 ZN(NO3)2${\cdot}$6H2O 와 HMT 에 각각 Ammonium chloride와 PEI를 첨가하였고, PEI 의 몰농도를 변화하여 성장된 ZnO 나노와이어의 구조적, 광학적 특성을 평가함으로서 전자소자 적용 가능성을 확인하였다.

  • PDF

Recent Progress in Synthesis of Plate-like ZnO and its Applications: A Review

  • Jang, Eue-Soon
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.3
    • /
    • pp.167-183
    • /
    • 2017
  • Zinc oxide (ZnO) is one of the most versatile semiconductors, and one-dimensional (1D) ZnO nanostructures have attracted significant interest for use in ultraviolet (UV) lasers, photochemical sensors, and photocatalysts, among other applications. It is known that 1D ZnO nanowires can be fabricated readily owing to the anisotropic growth of ZnO along the [0001] direction. However, this type of growth results in a decrease in the surface area of the (0001) plane, which plays a vital role not only in UV lasing but also in the photocatalytic process. Thus, we attempted to synthesize ZnO crystals with an increased polar surface area by controlling the crystal growth process. The purpose of this review is to propose a simple route for the synthesis of plate-like ZnO crystals with highly enhanced polar surfaces and to explore their feasibility for use in UV lasers as well as as a photocatalyst and antibacterial agent. In addition, we highlight the recent progress made in the pilot-scale synthesis of plate-like ZnO crystals for industrial applications.

Growth of ZnO thin films by MOCVD using the buffer layers grown at high temperature (고온 버퍼층을 이용한 ZnO 박막의 MOCVD 성장)

  • Kim, Dong-Chan;Kong, Bo-Hyun;Cho, Hyung-Koun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.108-109
    • /
    • 2006
  • ZnO semiconductor has a wide band gap of 3.37 eV and a large exciton binding energy of 60 meV, and displays excellent sensing and optical properties. In particular, ZnO based 1D nanowires and nanorods have received intensive attention because of their potential applications in various fields. We grew ZnO buffer layers prior to the growth of ZnO nanorods for the fabrication of the vertically well-aligned ZnO nanorods without any catalysts. The ZnO nanorods were grown on Si (111) substrates by vertical MOCVD. The ZnO buffer layers were grown with various thicknesses at $400^{\circ}C$ and their effect on the formation of ZnO nanorods at $300^{\circ}C$ was evaluated by FESEM, XRD, and PL. The synthesized ZnO nanorods on the ZnO film show a high quality, a large-scale uniformity, and a vertical alignment along the [0001]ZnO compared to those on the Si substrates showing the randomly inclined ZnO nanorods. For sample using ZnO buffer layer, 1D ZnO nanorods with diameters of 150-200 nm were successively fabricated at very low growth temperature, while for sample without ZnO buffer the ZnO films with rough surface were grown.

  • PDF

Effect of Oxygen Pressure on the Morphology of ZnO Nanostructures Fabricated by Thermal Evaporation Technique (열 증발법에 의하여 제작된 ZnO 나노 구조의 형상에 미치는 산소 압력의 영향)

  • Lee, Jung-Hun;Lee, Geun-Hyoung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.11
    • /
    • pp.873-877
    • /
    • 2012
  • The effect of oxygen pressure in the synthesis of ZnO nanostructures through thermal evaporation of Zn powder was investigated. The thermal evaporation process was carried out in oxygen ambient for 1 hr at $1,000^{\circ}C$ under different pressures. The oxygen pressure was changed in range of 0.5 ~ 900 Torr. Any nanostructure was not formed on the specimens prepared at oxygen pressures lower than 10 Torr. When oxygen pressure was 100 Torr, ZnO nanowires were observed. With increasing the oxygen pressure to 500 Torr, the morphology of ZnO nanostructures changed from wire to tetrapod. For all the samples, room temperature photoluminescence spectra show a strong green emission peak at around 550 nm.

Effect of Synthetic Temperature and Time on the Morphology of ZnO Crystals Fabricated by Thermal Evaporation of Al-Zn Mixture (Al-Zn 혼합물의 열 증발을 이용한 ZnO 결정의 합성에서 결정의 형상에 미치는 합성 온도와 시간의 영향)

  • Kim, Min-Sung
    • Korean Journal of Materials Research
    • /
    • v.25 no.6
    • /
    • pp.265-268
    • /
    • 2015
  • ZnO micro/nanocrystals at large scale were synthesized through the thermal evaporation of Al-Zn mixtures under air atmosphere. The effect of synthetic temperature and time on the morphology of the micro/nanocrystals was examined. It was found that the temperature and time affected the morphology of the ZnO crystals. At temperatures below $900^{\circ}C$, no crystals were synthesized. At a temperature of $1000^{\circ}C$, ZnO crystals with a rod shape were synthesized. With an increase in temperature from $1000^{\circ}C$ to $1100^{\circ}C$, the morphology of the crystals changed from rod shape to wire and granular shapes. As the time increased from 2 h to 3 h at $1000^{\circ}C$, tetrapod-shaped ZnO crystals started to form. XRD patterns showed that the ZnO crystals had a hexagonal wurtzite structure. EDX analysis revealed that the ZnO crystals had high purity. It is believed that the ZnO nanowires were grown via a vapor-solid mechanism because no catalyst particles were observed at the tips of the micro/nanocrystals in the SEM images.