• 제목/요약/키워드: ZnO block

검색결과 43건 처리시간 0.028초

피뢰기 소자(ZnO)의 열화특성에 관한 연구 (The Study on the Aging Characteristics of the Arrester Block(ZnO))

  • 김찬영;송일근;김주용;정년호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 D
    • /
    • pp.1459-1461
    • /
    • 1998
  • This paper provides the results of analysis of lightening arrester failed in the field. XRD was used for qualitative analysis and SEM for microstructure analysis of zinc oxide (ZnO) block. The failure of lightening arrester might occur due to the following reasons: the uneven size of zinc oxide grains and cement layers. the re-crystallization of zinc oxide grains resulting from electrical stress around impurities, and the presence of too large pores($\simeq$ 50 ${\mu}m$).

  • PDF

ZnO 나노구조체를 이용한 염료감응형 태양전지의 광전효율 (Photovoltaic Performence of Dye-sensitized Solar Cells using ZnO nanostructures)

  • 이정관;천종훈;김나리;김재홍
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.90.1-90.1
    • /
    • 2010
  • Due to the rapidly diminishing energy sources and higher energy production cost, the interest in dye-sensitized solar cells (DSSCs) has been increasing dramatically in recent years. A typical DSSC is constructed of wide band gap semiconductor electrode such as $TiO_2$ or ZnO that are anchored by light-harvesting sensitizer dyes and surrounded by a liquid electrolyte with a iodide ion/triiodide ion redox couple. DSSCs based on one-dimensional nano-structures, such as ZnO nanorods, have been recently attracting increasing attention due to their excellent electrical conductivity, high optical transmittance, diverse and abundant configurations, direct band gap, absence of toxicity, large exiton binding energy, etc. However, solar-to-electrical conversion performances of DSSCs composed of ZnO n-type photo electrode compared with that of $TiO_2$ are not satisfactory. An important reason for the low photovoltaic performance is the dissolution of $Zn^{2+}$ by the adsorption of acidic dye followed by the formation of agglomerates with dye molecules which could block the I-diffusion pathway into the dye molecule on the ZnO surface. In this paper, we prepared the DSSC with the ZnO electrode using the chemical bath deposition (CBD) method under low temperature condition (< $100^{\circ}C$). It was demonstrated that the ZnO seed layers played an important role on the formation of the ZnO nanostructures using CBD. To achieve truly low-temperature growth of the ZnO nanostructures on the substrates, a two-step method was developed and optimized in the present work. Firstly, ZnO seed layer was prepared on the FTO substrate through the spin-coating method. Secondly, the deposited ZnO seed substrate was immersed into an aqueous solution of 0.25M zinc nitrate hexahydrate and 0.25M hexamethylenetetramine at $90^{\circ}C$ for hydrothermal reaction several times.

  • PDF

누설전류의 제3고조파 분석에 의한 ZnO소자의 열화진단기술 (A Technique of Deterioration Diagnosis for ZnO Element by Analyzing the 3rd order Harmonics- of Leakage Current)

  • 이복희;강성만
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 E
    • /
    • pp.1740-1742
    • /
    • 1998
  • This paper describes the technique of deterioration diagnosis for ZnO element. Due to the non-linear resistance of ZnO block, the total leakage current contains harmonics when arrester deteriorated. The most significant harmonics is the 3rd order component. So, it can be used as an indicator of the arrester condition. An iron core, which has a very high relative permeability, is used for increasing detection sensitivity and the 3th order harmonics of leakage current was detected by band-pass circuit. And we have verified the reliability and performance of the sensing device through several laboratory tests.

  • PDF

Thickness Effect of ZnO Electron Transport Layers in Inverted Organic Solar Cells

  • Jang, Woong-Joo;Cho, Hyung-Koun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.377-377
    • /
    • 2011
  • Organic solar cells (OSCs) with low cost have been studied to apply on flexible substrate by solution process in low temperature [1]. In previous researches, conventional organic solar cell was composed of metal oxide anode, buffer layer such as PEDOT:PSS, photoactive layer, and metal cathode with low work function. In this structure, indium tin oxide (ITO) and Al was generally used as metal oxide anode and metal cathode, respectively. However, they showed poor reliability, because PEDOT:PSS was sensitive to moisture and air, and the low work function metal cathode was easily oxidized to air, resulting in decreased efficiency in half per day [2]. Inverted organic solar cells (IOSCs) using high work function metal and buffer layer replacing the PEDOT:PSS have focused as a solution in conventional organic solar cell. On the contrary to conventional OSCs, ZnO and TiO2 are required to be used as a buffer layer, since the ITO in IOSC is used as cathode to collect electrons and block holes. The ZnO is expected to be excellent electron transport layer (ETL), because the ZnO has the advantages of high electron mobility, stability in air, easy fabrication at room temperature, and UV absorption. In this study, the IOSCs based on poly [N-900-hepta-decanyl-2,7-carbazole-alt-5,5-(40,70-di-2-thienyl-20,10,30-benzothiadiazole)] (PCDTBT) : [6,6]-phenyl C71 butyric acid methyl ester (PC70BM) were fabricated with the ZnO electron-transport layer and MoO3 hole-transport layer. Thickness of the ZnO for electron-transport layer was controlled by rotation speed in spin-coating. The PCDTBT and PC70BM were mixed with a ratio of 1:2 as an active layer. As a result, the highest efficiency of 2.53% was achieved.

  • PDF

산화아연 나노입자의 환경 거동 및 영향 연구 (Environmental Fate and Effect of ZnO Nanoparticles)

  • 하지연;장민희;황유식
    • 대한환경공학회지
    • /
    • 제39권7호
    • /
    • pp.418-425
    • /
    • 2017
  • 산화아연 나노입자(ZnO nanoparticles, ZnO NPs)는 반도체, 태양전지, 바이오센서 및 화장품 (자외선 차단제) 등에 주로 쓰이며 해마다 사용량이 증가하여 환경에 노출될 가능성이 높아졌다. 이에 본 연구에서는 수환경과 토양환경 내 산화아연 나노입자의 거동 및 수경재배 방식으로 식물에 미치는 영향을 평가하였다. 수환경 조건 pH 7 이상 (pH =7-10)에서는 산화아연 나노입자의 입자크기가 증가하였고, 용해된 아연이 감소하는 것을 확인하였다. 또한 산화아연 나노입자는 토양 내에서 2.5cm 까지 이동하여, 하부로의 이동이 매우 미비함을 확인하였다. 한편, 산화아연 나노입자를 식물에 노출시킬 경우 총무게가 감소하였고, 뿌리 및 줄기의 길이에는 영향을 주지 않았다. 또한 뿌리 표면에 흡착하거나 세포내로 이동한 산화아연 나노입자를 관찰할 수 있었으며, 줄기로의 이동은 미비함을 확인하였다. 이러한 결과는 식물의 뿌리 및 줄기로 이동하여 세포벽을 파괴하는 아연 이온과는 달리, 산화아연 나노입자는 식물 뿌리에 흡착하여 체내로 영양분이 공급되는 것을 방해함으로써 식물 성장에 영향을 주는 것을 의미한다. 따라서 산화아연 나노입자가 환경 중에 노출될 경우 수환경에서는 입자크기가 증가하여 침전 현상이 일어나고, 식물 뿌리에 흡착하여 식물 성장에 영향을 미치는 것으로 판단된다.

Thin Films for Environmental Application and Energy Devices

  • Kim, Young-Dok
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.91-91
    • /
    • 2012
  • We aim in synthesizing various functional thin films thinner than ~ 10 nm for environmental applications and photovoltaic devices. Atomic layer deposition is used for synthesizing inorganic thin films with a precise control of the film thickness. Several examples about application of our thin films for removing volatile organic compounds (VOC) will be highlighted, which are summarized in the below. 1) $TiO_2$ thin films prepared by ALD at low temperature ($<100^{\circ}C$) show high adsorption capacity for toluene. In combination with nanostructured templates, $TiO_2$ thin films can be used as building-block of high-performing VOC filter. 2) $TiO_2$ thin films on carbon fibers and nanodiamonds annealed at high temperatures are active for photocatalytic oxidation of VOCs, i.e. photocatalytic filter can be created by atomic layer deposition. 3) NiO can catalyze oxidation of toluene to $CO_2$ and $H_2O$ at $<300^{\circ}C$. $TiO_2$ thin films on NiO can reduce poisoning of NiO surfaces by reaction intermediates below $200^{\circ}C$. We also fabricated inverted organic solar cell based on ZnO electron collecting layers on ITO. $TiO_2$ thin films with a mean diameter less than 3 nm on ZnO can enhance photovoltaic performance by reducing electron-hole recombination on ZnO surfaces.

  • PDF

직류와 60 Hz 교류가 중첩된 전압에 대한 산화아연 피뢰기 소자의 누설전류 특성 (Characteristics of ZnO Arrester Blocks Leakage Currents under Mixed Direct and 60 Hz Alternating Voltages)

  • 이복희;강성만;박건영
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제54권1호
    • /
    • pp.23-29
    • /
    • 2005
  • This paper presents the characteristics of leakage currents flowing through ZinC Oxide(ZnO) surge arrester blocks under mixed direct and 60 Hz alternating voltages. A mixed voltage, in which an alternating voltage is superimposed upon a direct voltage, appears on the HVDC system network. The mixed direct and alternating voltage generator with a peak open-circuit of 10 kV was designed and fabricated. The leakage currents and V-I curves for the fine and used ZnO surge arrester blocks were measured as a function of the voltage ratio k, where the voltage ratio k is defined as the ratio of the peak of alternating voltage to the peak of the mixed voltages. The resistive component in the leakage current in the low conduction region is significantly increased with increasing the voltage ratio k. The V-I characteristic curves for the mixed voltages lies between the direct and alternating characteristics, and the cross-over phenomenon in the high conduction region was appeared.

알루미나가 포함된 복합산화물의 제조와 열물성 특성평가 (Fabrication and Thermophysical Properties of Al2O3-Based Multicomponent Composites by Sol-Gel Process)

  • 임샛별;유희정;홍태환;정미원
    • 한국재료학회지
    • /
    • 제20권9호
    • /
    • pp.472-477
    • /
    • 2010
  • $Al_2O_3$ has received wide attention with established use as a catalyst and growing application in structural or functional ceramic materials. On the other hand, the boehmite (AlO(OH)) obtained by sol-gel process has exhibited a decrease in surface area during phase transformation due to a decline in surface active site at high temperature. In this work, $Al_2O_3$-CuO/ZnO (ACZ) and $Al_2O_3$-CuO/CeO (ACC) composite materials were synthesized with aluminum isopropoxide, copper (II) nitrate hemi (pentahydrate), and cerium (III) nitrate hexahydrate or zinc (II) nitrate hexahydrate. Moreover, the Span 80 as the template block copolymer was added to the ACZ/ACC composition to make nano size particles and to keep increasing the surface area. The ACZ/ACC synthesized powders were characterized by Thermogravimetry-Differential Thermal analysis (TG/DTA), X-ray Diffractometer (XRD), Field-Emmision Scanning Electron Microscope (FE-SEM), Bruner-Emmett-Teller (BET) surface analysis and thermal electrical conductivity (ZEM-2:M8/L). An enhancement of surface area with the addition to Span 80 surfactant was observed in the ACZ powders from 105 $m^2$/g to 142 $m^2$/g, and the ACC powders from 103 $m^2$/g to 140 $m^2$/g, respectively.

Al-합금의 단열섬유판 반응침투에 의한 $Al_2O_3$-세라믹스의 형성 (Formation of $Al_2O_3$-Ceramics by Reactive Infiltration of Al-alloy into Insulation Fiber Board)

  • 김일수
    • 한국세라믹학회지
    • /
    • 제34권5호
    • /
    • pp.483-490
    • /
    • 1997
  • Al2O3/metal composites were fabricated by oxidation and reaction of molten Al-alloy into two types of commercial Al2O3-SiO2 fibrous insulation board. The growth rate, composition and microstructure of these materials were described. An AlZnMg(7075) alloy was selected as a parent alloy. Mixed polycrystalline fiber and glass phase fiber were used as a filler. The growth surface of an alloy was covered with and without SiO2. SiO2 powder was employed as a surface dopant to aid initial oxidation of Al-alloy. Al-alloy, SiO2, fiber block and growth inhibitor CaSiO3 were packed sequentially in a alumina crucible and oxidized in air at temperature range 90$0^{\circ}C$ to 120$0^{\circ}C$. The growth rate of composite layer was calculated by measuring the mass increasement(g) per unit surface($\textrm{cm}^2$). XRD and optical microscope were used to investigate the composition and phase of composites. The composite grown at 120$0^{\circ}C$ and with SiO2 dopant showed rapid growth rate. The growth behavior differed a little depending on the types of fiber used. The composites consist of $\alpha$-Al2O3, Al, Si and pore. The composite grown at 100$0^{\circ}C$ exhibited better microstructure compared to that grown at 120$0^{\circ}C$.

  • PDF

다중 뇌충격전류에 의한 산화아연형 피뢰기 소자의 특성 변화 (Characteristic Changes of ZnO Arrester Blocks by Multiple-lightning Impuse Currents)

  • 길경석;한주섭
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권12호
    • /
    • pp.685-690
    • /
    • 2000
  • Multiple-lightning impulse currents are a general feature of the lightning ground f=flash. It is therefore necessary for lightning arresters used in power systems to be estimated by applying not only a single-lightning impulse current but also a multiple-lightning impulse currents. This paper presents the effects of multiple-lightning impulse currents on deterioration of ZnO arrester blocks. The multiple-lightning impulse generator which can produce quadruple 8/20$[\mus]$ 5[kA] with separation time of 30~120[ms] is designed and fabricated. The total energy applied to the arrester block at each impulse is about 1,200[J]. In experiment, various parameters such as leakage current component, reference voltage, and temperature are measured with the number of applied impulse current. Also, micro-structure changes of the ZnO blocks after applying the single and the multiple-lightning impulse currents of 200 times are compared. The experimental results indicate that the types of arrester blocks are more vulnerable to deterioration or damage by multiple-lightning impulse currents.

  • PDF