• Title/Summary/Keyword: ZnO and ZnO:Ga thin films

Search Result 194, Processing Time 0.03 seconds

Photoluminescence Characteristics of the ZnGa2O4 Phosphor Thin Films as a Function of Post-annealing Temperature (후열처리 온도에 따른 ZnGa2O4 형광체 박막의 발광 특성)

  • Yi, Soung-Soo;Jeong, Jung-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.60-65
    • /
    • 2002
  • $ZnGa_2O_4$ thin film phosphors have been deposited using a pulsed laser deposition method on Si(100) substrates at a substrate temperature of $550^{\circ}C$ with oxygen pressures of 100mTorr, and subsequently to investigate their photoluminescence characteristics after post-annealed at $600^{\circ}C$ and $700^{\circ}C$. As a result for X-ray diffraction, $Ga_2O_3$ shape appeared with increasing annealing temperature. The luminescent spectra show a broad band extending from 350 to 600nm peaking at 460nm. A post-annealing treatment of $ZnGa_2O_4$ thin films led to the different shape of luminescent intensity and grain size.

Electrical and Structural Properties of GAZO Films Deposited by DC Magnetron Co-sputtering System with Two Cathodes (DC 마그네트론 Co-sputtering 시스템을 이용하여 증착한 GAZO 박막의 전기적 및 구조적 특성)

  • Jie, Luo;Park, Se-Hun;Song, Pung-Keun
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.3
    • /
    • pp.122-127
    • /
    • 2009
  • Ga/Al doped ZnO (GAZO) thin films were prepared on non-alkali glass substrate by co-sputtering system using two DC cathodes equipped with AZO ($Al_2O_3$:2.0 wt%) target and GZO ($Ga_2O_3$:6.65 wt%) target. This study examined the influence of Al/Ga concentration and substrate temperature on the electrical, structural and optical properties of GAZO films. The lowest resistivity $1.95{\times}10^{-3}{\Omega}cm$ was obtained at room temperature. With increasing substrate temperature, resistivity of GAZO film decreased to a minimum value of $7.47{\times}10^{-4}{\Omega}cm$ at below $300^{\circ}C$. Furthermore, when 0.05% $H_2$ gas was introduced, resistivity of GAZO film decreased to $6.69{\times}10^{-4}{\Omega}cm$. All the films had a preferred orientation along the (002) direction, indicating that the deposited films have hexagonal wurtzite structure formed by the textured growth along the c-axis. The average transmittance of the films was more than 85% in the visible light range.

Sensing properties of ZnO thin films fabricated by RF sputtering method for toxic gas (RF sputtering 방법을 이용하여 제작한 ZnO 박막의 유독성 가스에 대한 반응 특성 연구)

  • Hwang, Hyun-Suk;Kang, Hyun-Il;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.247-247
    • /
    • 2009
  • In this work, Ga-doped ZnO (GZO) thin films for toxic gas sensor application were deposited on low temperature co-fired ceramic (LTCC) substrates, by RF magnetron sputtering method. LTCC is one of promising materials for integration with heater, low cost production and high manufacturing yields than silicon substrate. The LTCC substrates with thickness of $400\;{\mu}m$ were fabricated by laminating 12 greentapes which consist of alumina and glass particle in an organic binder. The GZO thin films deposited on the substrates and were analyzed by X-ray diffraction method (XRD) and field emission scanning electron microscope (FESEM). The films are well crystallized in the hexagonal (wurzite) structure with increasing thickness. The fabricated sensors showed good sensitivity and fast response time to common types of toxic gases (NOx, COx).

  • PDF

Effect of RF Power on the Structural, Optical and Electrical Properties of Amorphous InGaZnO Thin Films Prepared by RF Magnetron Sputtering (RF 마그네트론 스퍼터링으로 증착한 비정질 InGaZnO 박막의 구조적, 광학적, 전기적 특성에 미치는 RF 파워의 영향)

  • Shin, Ji-Hoon;Cho, Young-Je;Choi, Duck-Kyun
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.1
    • /
    • pp.38-43
    • /
    • 2009
  • To investigate the effect of RF power on the structural, optical and electrical properties of amorphous InGaZnO (a-IGZO), its thin films and TFTs were prepared by RF magnetron sputtering method with different RF power conditions of 40, 80 and 120 W at room temperature. In this study, as RF power during the deposition process increases, the RMS roughness of a-IGZO films increased from 0.26 nm to 1.09 nm, while the optical band-gap decreased from 3.28 eV to 3.04 eV. In the case of the electrical characteristics of a-IGZO TFTs, the saturation mobility increased from $7.3cm^2/Vs$ to $17.0cm^2/Vs$, but the threshold voltage decreased from 5.9 V to 3.9 V with increasing RF power. It is regarded that the increment of RF power increases the carrier concentration of the a-IGZO semiconductor layer due to the higher generation of oxygen vacancies.

A Study on Thermal Stability of Ga-doped ZnO Thin Films with a $TiO_2$ Barrier Layer

  • Park, On-Jeon;Song, Sang-Woo;Lee, Kyung-Ju;Roh, Ji-Hyung;Kim, Hwan-Sun;Moon, Byung-Moo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.434-436
    • /
    • 2013
  • Ga-doped ZnO (GZO) was substitutes of the SnO2:F films on soda lime glass substrate in the photovoltaic devices such as CIGS, CdTe and DSSC due to good properties and low cost. However, it was reported that the electrical resistivity of GZO is unstable above $300^{\circ}C$ in air atmosphere. To improve thermal stability of GZO thin films at high temperature above $300^{\circ}C$ an $TiO_2$ thin film was deposited on the top of GZO thin films as a barrier layer by Pulsed Laser Deposition (PLD) method. $TiO_2$ thin films were deposited at various thicknesses from 25 nm to 100 nm. Subsequently, these films were annealed at temperature of $300^{\circ}C$, $400^{\circ}C$, $500^{\circ}C$ in air atmosphere for 20 min. The XRD measurement results showed all the films had a preferentially oriented ( 0 0 2 ) peak, and the intensity of ( 0 0 2 ) peak nearly did not change both GZO (300 nm) single layer and $TiO_2$ (50 nm)/GZO (300 nm) double layer. The resistivity of GZO (300 nm) single layer increased from $7.6{\times}10^{-4}{\Omega}m$ (RT) to $7.7{\times}10^{-2}{\Omega}m$ ($500^{\circ}C$). However, in the case of the $TiO_2$ (50 nm)/GZO (300 nm) double layer, resistivity showed small change from $7.9{\times}10^{-4}{\Omega}m$ (RT) to $5.2{\times}10^{-3}{\Omega}m$ ($500^{\circ}C$). Meanwhile, the average transmittance of all the films exceeded 80% in the visible spectrum, which suggests that these films will be suitable for photovoltaic devices.

  • PDF

Effects of Ta addition in Co-sputtering Process for Ta-doped Indium Tin Oxide Thin Film Transistors

  • Park, Si-Nae;Son, Dae-Ho;Kim, Dae-Hwan;Gang, Jin-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.334-334
    • /
    • 2012
  • Transparent oxide semiconductors have recently attracted much attention as channel layer materials due to advantageous electrical and optical characteristics such as high mobility, high stability, and good transparency. In addition, transparent oxide semiconductor can be fabricated at low temperature with a low production cost and it permits highly uniform devices such as large area displays. A variety of thin film transistors (TFTs) have been studied including ZnO, InZnO, and InGaZnO as the channel layer. Recently, there are many studies for substitution of Ga in InGaZnO TFTs due to their problem, such as stability of devices. In this work, new quaternary compound materials, tantalum-indium-tin oxide (TaInSnO) thin films were fabricated by using co-sputtering and used for the active channel layer in thin film transistors (TFTs). We deposited TaInSnO films in a mixed gas (O2+Ar) atmosphere by co-sputtering from Ta and ITO targets, respectively. The electric characteristics of TaInSnO TFTs and thin films were investigated according to the RF power applied to the $Ta_2O_5$ target. The addition of Ta elements could suppress the formation of oxygen vacancies because of the stronger oxidation tendency of Ta relative to that of In or Sn. Therefore the free carrier density decreased with increasing RF power of $Ta_2O_5$ in TaInSnO thin film. The optimized characteristics of TaInSnO TFT showed an on/off current ratio of $1.4{\times}108$, a threshold voltage of 2.91 V, a field-effect mobility of 2.37 cm2/Vs, and a subthreshold swing of 0.48 V/dec.

  • PDF

High-performance thin-film transistor with a novel metal oxide channel layer

  • Son, Dae-Ho;Kim, Dae-Hwan;Kim, Jung-Hye;Sung, Shi-Joon;Jung, Eun-Ae;Kang, Jin-Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.222-222
    • /
    • 2010
  • Transparent semiconductor oxide thin films have been attracting considerable attention as potential channel layers in thin film transistors (TFTs) owing to their several advantageous electrical and optical characteristics such as high mobility, high stability, and transparency. TFTs with ZnO or similar metal oxide semiconductor thin films as the active layer have already been developed for use in active matrix organic light emitting diode (AMOLED). Of late, there have been several reports on TFTs fabricated with InZnO, AlZnSnO, InGaZnO, or other metal oxide semiconductor thin films as the active channel layer. These newly developed TFTs were expected to have better electrical characteristics than ZnO TFTs. In fact, results of these investigations have shown that TFTs with the new multi-component material have excellent electrical properties. In this work, we present TFTs with inverted coplanar geometry and with a novel HfInZnO active layer co-sputtered at room temperature. These TFTs are meant for use in low voltage, battery-operated mobile and flexible devices. Overall, the TFTs showed good performance: the low sub-threshold swing was low and the $I_{on/off}$ ratio was high.

  • PDF

Sputtered Al-Doped ZnO Layers for Cu2ZnSnS4 Thin Film Solar Cells

  • Lee, Kee Doo;Oh, Lee Seul;Seo, Se-Won;Kim, Dong Hwan;Kim, Jin Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.688-688
    • /
    • 2013
  • Al-doped ZnO (AZO) thin films have attracted a lot of attention as a cheap transparent conducting oxide (TCO) material that can replace the expensive Sn-doped In2O3. In particular, AZO thin films are widely used as a window layer of chalcogenide-based thin film solar cells such as Cu(In,Ga)Se2 and Cu2ZnSnS4 (CZTS). Mostly important requirements for the window layer material of the thin film solar cells are the high transparency and the low sheet resistance, because they influence the light absorption by the activelayer and the electron collection from the active layer, respectively. In this study, we prepared the AZO thin films by RF magnetron sputtering using a ZnO/Al2O3 (98:2wt%) ceramic target, and the effect of the sputtering condition such as the working pressure, RF power, and the working distance on the optical, electrical, and crystallographic properties of the AZO thin films was investigated. The AZO thin films with optimized properties were used as a window layer of CZTS thin film solar cells. The CZTS active layers were prepared by the electrochemical deposition and the subsequent sulfurization process, which is also one of the cost-effective synthetic approaches. In addition, the solar cell properties of the CZTS thin film solar cells, such as the photocurrent density-voltage (J-V) characteristics and the external quantum efficiency (EQE) were investigated.

  • PDF

ZnO films grown on GaN/sapphire substrates by pulsed laser deposition

  • Suh, Joo-Young;Song, Hoo-Young;Shin, Myoung-Jun;Park, Young-Jin;Kim, Eun-Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.207-207
    • /
    • 2010
  • Both ZnO and GaN have excellent physical properties in optoelectronic devices such as blue light emitting diode (LED), blue laser diode (LD), and ultra-violet (UV) detector. The ZnO/GaN heterostructure, which has a potential to achieve the cost efficient LED technology, has been fabricated by using radio frequency (RF) sputtering, pyrolysis, metal organic chemical vapor deposition (MOCVD), direct current (DC) arc plasmatron, and pulsed laser deposition (PLD) methods. Among them, the PLD system has a benefit to control the composition ratio of the grown film from the mixture target. A 500-nm-thick ZnO film was grown by PLD technique on c-plane GaN/sapphire substrates. The post annealing process was executed at some varied temperature between from $300^{\circ}C$ to $900^{\circ}C$. The morphology and crystal structural properties obtained by using atomic force microscope (AFM) and x-ray diffraction (XRD) showed that the crystal quality of ZnO thin films can be improved as increasing the annealing temperature. We will discuss the post-treatment effect on film quality (uniformity and reliability) of ZnO/GaN heterostructures.

  • PDF

Quality prediction method by using ZnO thin film deposition process modeling (ZnO 박막 증착 공정 모델링에 의한 품질 예측 기법)

  • Lim, Keun-Young;Chung, Doo-Yeon;Lee, Sang-Keuk;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.163-164
    • /
    • 2006
  • ZnO deposition parameters are not independent and have a nonlinear and complex properties respectively. Therefore, finding optimal process conditions are very difficult and need to do many experiments. To predict ZnO deposition result, neural network was used. To gather training data, Si, GaAs, and Glass were used for substrates, and substrate temperature, work pressure, RF power were $50-500^{\circ}C$, 15 mTorr, and 180-210 W respectively, and the purity of target was ZnO 4N. For predicting the result of ZnO deposition process exactly, sensitivity analysis and drawing a response surface was added. The temperature of substrate was evaluated as a most important variable. As a result, neural network could verify the nonlinear and complex relations of variables and find the optimal process condition for good quality ZnO thin films.

  • PDF