탄소섬유 복합재의 기계적 강도를 높이기 위하여 탄소섬유상에 ZnO 나노구조체를 도금하는 연구를 수행하였다. 전기도금을 이용하여 정전위법으로 탄소섬유상에 ZnO 나노구조체를 도금시킨 후 에폭시 YD-128과 경화제 KBH1089를 이용하여 탄소섬유 복합재를 제작하였다. 제작된 탄소섬유 복합재는 실험규격 ASTM D2344를 준수하였으며 ILSS(Interaminar Shear Strength)시험으로 강도를 측정하였다. 본 연구결과 탄소섬유에 인가되는 coulomb양을 조절함으로서 ZnO 나노구조체 형상을 제어할 수 있었으며, 일반탄소섬유 복합재와 ZnO 나노구조체가 도금된 탄소섬유 복합재의 강도를 비교하였을 때 ZnO 나노구조체가 도금 된 탄소섬유 복합재에서 더 높은 강도 값을 얻을 수 있었다.
현재 나노크기의 나노소자에 대한 관심과 연구가 활발히 진행 중에 있고, 나노소자 제작을 위한 나노구조체 연구에도 탄력을 받고 있다. 나노구조체 연구 중에서도 탄소나노튜브(CNT)와 실리콘이 많이 연구되고 있으나 CNT의 경우 금속과 반도체 등 전기적 특성이 혼재되어 분리기술이 필요하며, 실리콘 기반의 나노구조체들은 공기 중에 노출되었을 경우 자연 산화막 생성에 대한 문제점들이 대두되고 있다. 이러한 기존 나노구조체들의 문제점들을 극복하기 위해 산화물 계열의($InO_3$, ZnO와 $SnO_2$ 등) 나노구조체들이 화학, 광학 및 생화학 센서등의 다양한 응용 연구들이 진행되고 있다. 본 연구에서는 thermal evaporation법으로 tube furnace 장비를 이용하여 온도($500{\sim}900^{\circ}C$)변화에 따른 ZnO nanorod를 성장시켰다. 성장된 ZnO nanorod의 구조적 특성을 확인하기 위하여 전계방출주사전자현미경(SEM)을 측정한 결과 ZnO nanorod들은 직경 50~80nm, 길이는 400~1000nm 이상까지 다양한 직경과 길이를 가지고 성장되었으며 $800^{\circ}C$ 에서 성장된 ZnO nanorod가 가장 곧고 이상적인 nanorod의 형태를 이루는 것을 확인할 수 있었다. Nanorod는 온도가 높아질수록 nanowire로 성장됨에 따라 본 연구에서 $800^{\circ}C$ 에서는 nanorod형태를 이루고 있으나 $900^{\circ}C$에서부터 nanowire의 형태로 성장되었다. 또한 성장된 ZnO nanorod들의 X-선 회절패턴(XRD)을 측정 결과 ZnO의 (002) 우선 배양성 때문에 성장된 nanorod 또한 (002) 방향으로 성장되었음을 확인하였다. 이 연구를 통하여 온도를 조절함으로서 ZnO nanorod의 성장제어가 가능함을 확인하였고, 특성 분석을 통하여 발광소자, Solar Cell로의 응용가능성을 확인하였다.
넓은 밴드갭 (3.37eV)과 높은 엑시톤 결합에너지 (60meV)를 가지는 ZnO 물질은 ultra violet light 센서 및 light emitting diode (LED)의 재료로써 많은 연구가 진행되고 있다. 특히 나노와이어 구조를 이용하여 소자를 만들 경우 양자효과와 1차원적 캐리어 수송경로 효과로 인하여 그 특성을 보다 향상 시킬 수 있다. 나노와이어를 이용한 이종접합 p-n 다이오드를 제작하기 위하여 ZnO와 격자상수가 비슷한 GaN, NiO, CoO와 같은 물질들이 나노구조 접합에 많이 쓰이고 있지만, 격자상수 차이로 인해서 접합부분 캐리어 수송효율이 떨어지는 단점을 가지고 있다. n-type과 p-type ZnO를 만들어 동종 접합을 만들 경우 이러한 문제점을 극복할 수 있지만, 도핑되지 않은 ZnO가 n-type을 특성을 나타내기 때문에 안정적인 p-type ZnO 합성에 대한 연구가 필수적이다. 본 연구에서는 안정적인 p-type ZnO 합성을 위해서 수열합성법을 이용하여 phosphorus (P) 도핑을 하였고, 나노와이어 diode 구조를 만들었다. P 도핑으로 인한 격자상수 변화는 x-ray diffraction (XRD)를 사용하여 확인하였고, x-ray photoelectron spectroscopy (XPS)를 통해 도핑 원소를 분석하였으며, 이때의 recification ratio, turn-on voltage 등의 전기적 특성을 평가하였다.
ZnO nanorods 구조는 광소자 및 태양광 소자의 성능을 향상시키기 위해서 무반사계수, 광추출효율, 전기적, 열적 전도도를 개선시킬 수 있어, 매우 큰 관심을 가지고 왔다. 또한 Ag 나노입자는 표면 플라즈몬 효과를 이용하여 LED나 태양전지에 응용하여 소자의 성능이 향상됨을 이론적, 실험적으로 증명되어 왔으며, 현재에도 활발한 연구가 진행되고 있다. 이러한 ZnO nanorods 특성과 Ag 나노입자의 표면 플라즈몬 효과를 이용하기 위해서, 본 연구에서는 Ag 나노 입자를 형성된 ZnO seed층에 ZnO nanorods를 성장시켰다. 시료를 제작을 위해서 비교적 성장이 간단하고 저온성장이 가능한 화학적 합성방법을 이용하였다. Ag 나노입자가 형성된 ZnO seed층 제작을 위해서 먼저 Si 기판위에 RF magnetron 스퍼터를 이용하여 고진공, $N_2$ 분위기에서 일정한 두께로 증착을 하였으며, 이후 Ag 박막을 thermal evaporator로 10 nm 두께로 증착하였다. 그 다음, 크기가 다른 Ag 나노입자를 형성을 위해서 rapid thermal annealing (RTA)을 여러 가지 온도에서 수행하였다. 그리고 이러한 시료들를 이용하여, ZnO nanorods를 성장하기 위하여, $90-95^{\circ}$의 온도에서 zinc nitrate $Zn(NO_3)_2{\cdot}6H_2O$과 hexamethylentetramines (HMT)으로 혼합된 용액에 담가두어 ZnO nanorods를 성장시켰다. Ag 나노입자의 크기에 따라 ZnO nanorods의 구조와 형태에 대하여 어떠한 영향을 주는지를 관찰하기 위해 field emission scanning electron microscopy (FE-SEM)을 이용하여 측정하였으며, Ag와 ZnO의 성분분석과 결정성을 조사하기 위해 X-ray diffraction (XRD)을 이용하여 분석하였다. 그리고 표면 플라즈몬에 의한 영향에 대하여 조사하기 위해, ZnO nanorods와 Ag 나노입자가 형성된 ZnO nanorods를 UV-Vis-NIR spectrophotometer을 이용하여 흡수계수와 반사계수를 비교하여 측정하였으며. 태양전지의 성능향상을 수 있음을 이론적으로 계산하였다. 그리고 또한 photoluminescence (PL) 분석을 수행하여 ZnO nanorods의 구조에 대하여 Ag 나노입자의 영향에 대한 광특성을 측정하였다.
기능성 나노소자를 구현할 수 있는 나노 소재로 0차원 구조의 양자점(quantum dot)과 1차원 구조의 양자선 및 나노선(nanorod)이 제안되고 있다. 나노선의 경우 나노스케일의 dimension, 앙자 제한 효과, 탁월한 결정성, self-assembly, internal stress등 기존의 벌크형 소재에서 발견할 수 없는 새로운 기능성이 나타나고 있어서 바이오, 에너지, 구조, 전자, 센서 등의 분야에서 활용되고 있다. 현재 국내외적으로 널리 연구되고 있는 나노선으로는 Si 및 Ge, $SnO_2$, SiC, ZnO 등이 있으며 특히, ZnO는 우수한 물리적 전기적 특성과 함께 나노선으로의 합성이 비교적 쉬워 주목받고 있는 재료이다. ZnO의 합성방법으로는 thermal CVD, MOCVD, PLD, wet-chemistry 등 다양한 방법이 사용되고 있다. 특히 MOCVD 법은 수직 정렬된 ZnO 나노막대를 합성하기가 매우 용이하다. 본 실험에서는 자체개발된 MOCVD 장비를 이용한 일차원 ZnO 나노선을 성장하였다. 이러한 ZnO 나노선의 성장은 사파이어 기판과 실리콘 기판 위에서 이루어졌으며 기판의 종류와 격자상수 불일도에 따른 상이한 성장과정을 온도에 따른 나노선 성장에서 관찰할 수 있었다. 사파이어 기판의 경우, 240도의 온도에서는 박막형상을 지닌 ZnO가 온도가 320도 이상으로 상승하면서 나노선으로 변함을 보였고, 실리콘 기판의 경우 380도 이상에서 기울기률 가진 나노선을 관찰하였으며, 420도에서는 나노선을 관찰 할 수 없었다. 또한 PL 장비를 이용한 PL 강도와 성장과정을 연관하여 생각하였을 때, 나노선의 기물기가 PL 강도비과 연관성을 가진다는 것을 측정을 통해 확인하였다.
전기도금방법으로 여러형태의 ZnO 나노구조를 ITO/glass 위에 전착하였다. 그 중 sheet 형태의 ZnO 나노구조 위에 $TiO_2$와 CdSe 나노입자를 전기화학적 방법으로 전착하여 유 무기 복합태양전지 및 염료감응형 태양전지의 anode로 적용하였다. 동일조건 하에서 ZnO-CdSe 형태의 전극을 사용하였을 때 Jsc, Voc 값이 상대적으로 다른 전극에 비해 증가하였다.
ZnO 나노선 구조는 나노선 구조를 통해 입사한 빛을 산란시켜 광흡수를 촉진시키고, 바닥 전극으로 바로 이어진 수직의 1차원 구조를 통해 전자가 빠르게 이동할 수 있으며, 넓은 표면적을 가지고 있는 등의 장점을 가지고 있어 오래전부터 광전소자에 이용되었다. 하지만 ZnO 물질 자체의 밴드갭 에너지가 3.2 eV로 비교적 큰 편이라 가시광 영역의 빛을 흡수, 이용하기 위해서는 작은 밴드갭을 가지는 광감응 물질이 필요하다. 본 연구에서는 저온의 수열합성법을 통해 합성한 ZnO 나노선 구조 상에 Cd 계열의 무기물 양자점을 증착하여 이종구조를 형성하는 방법을 개발하였다. 본 연구에서 사용한 양자점인 CdS와 CdSe는 벌크 밴드갭 에너지가 각각 2.3 eV, 1.7 eV로 가시광 영역의 빛을 흡수할 수 있으며, ZnO 나노선과 type-II 밴드구조를 가지기 때문에 전자-정공 분리 및 포집에 유리하다. 합성된 구조를 이용하여 photoelectrochemical 특성을 분석하였으며, 그 결과 양자점의 증착으로 광전류 생성이 향상됨을 확인하였다. 특히 ZnO 나노선 상에 CdS 양자점 증착 후 추가적으로 CdSe 양자점을 증착하여 다중접합 나노선 구조를 형성한 경우 광전류 생성이 가장 크게 향상된 결과를 확인하였다.
본 연구에서, 금 촉매가 4nm 증착된 GaN/$Al_2O_3$ 기판위에 nanowire와 nanowall과 같은 ZnO 나노구조물을 화학기상증착법을 이용하여 합성시켰다. 합성된 ZnO 나노구조물의 형상은 성장시간과 성장온도 조작을 통하여 제어하였다. 합성된 ZnO 나노구조물의 협상을 관찰하기 위해, 전계방출 주사전자현미경을 측정하였다. ZnO 나노구조물은 성장 온도가 $1000^{\circ}C$에서 $1100^{\circ}C$로 증가함에 따라 불균일한 막, nanowire, nanowall 형태로 형상이 점차적으로 변하였으며, 또한 각각의 성장온도에서 성장 시간이 증가함에 따라 나노와이어의 성장이 두드러지게 나타났다. 또한 합성된 ZnO 나노구조물의 결정성과 광학특성을 X-ray diffraction pattern과 상온 photoluminescence spectrum을 이용하여 각각 분석하였다. 이룰 통하여 합성된 ZnO 나노구조물은 wurzite 결정구조를 가지며, 380nm 영역에서 near band edge emission 에 의한 발광 peak와 500~550nm 영역에서 deep level emission에 의한 발광 peak이 나타나는 것을 확인하였다.
ZnO는 광학적 및 전기적 성질의 여러 가지 장점 때문에 메모리, 나노발전기, 트랜지스터, 태양전지, 광탐지기 및 레이저와 같은 전자소자 및 광소자로 여러 분야에서 다양하게 사용되고 있다. Al이 도핑된 ZnO 나노결정체를 전기화학적 증착법을 이용하여 형성하고, 형성시간의 변화에 따른 구조적 및 광학적 성질을 관찰했다. ITO로 코팅된 유리 기판에 전기화학증착법을 이용해 Al 도핑된 ZnO를 성장시켰다. Sputtering, pulsed laser vapor deposition, 화학기상증착, atomic layer epitaxy, 전자빔증발법 등으로 Al 도핑된 ZnO 나노구조를 형성할 수 있지만, 본 연구에서는 간단한 공정과정, 저온증착, 고속, 저가의 특성 등으로 경제적인 면에서 효율적인 전기화학증착법을 이용했다. 반복실험을 통하여 Al의 도핑 농도는 Zn와 Al의 비율이 98:2이 되도록, ITO 양극과 Pt 음극의 전위차가 -2.25 V가 되도록 실험조건을 고정했고, 성장시간을 각각 1분, 5분, 10분으로 변화하였다. 주사전자현미경 사진을 보면 Al 도핑된 ZnO는 성장 시간이 증가함에 따라 나노구조의 직경이 커지는 것을 알 수 있다. 광루미네센스 측정 결과는 산소 공핍의 증가로 보이는 500~600 nm대의 파장에서 나타난 피크의 위치가 에너지가 큰 쪽으로 증가했다. 위 결과로부터 성장 시간에 따른 Al 도핑된 ZnO의 구조적 및 광학적 특성변화를 관찰했고, 이 연구 결과는 Al 도핑된 ZnO 나노구조 기반 전자소자 및 광소자에 응용 가능성을 보여주고 있다.
차세대 대체에너지로서 유기태양전지는 저비용, flexible한 장점이 있다. 그러나 에너지 효율이 상대적으로 낮아 고효율 유기태양전지 개발이 필요하다. 이 문제를 개선하기위해 본 실험에서는 전기화학적인 방법으로 ZnO 나노구조체 (nanowire, film)를 ITO위에 전착하였다. ZnO 나노구조체는 Poly(3-hexylthiophene)(P3HT):[6,6]-Phnyl-C61-butyric acid methyl ester (PCBM)에서 엑시톤된 전자와 홀의 charge collector와 electron path way로서 사용되었다. 유/무기 하이브리드 태양전지의 구조는 Ag/P3HT:PCBM/(A)/ITO로 사용하였으며 (A)는 (1) ZnO nanowire/ZnO film (2)ZnO nanowire (3)ZnO film으로, 각각의 효율을 측정하였다. 생성된 ZnO 나노구조를 FE-SEM, XRD, TEM, UV/vis로 분석하였고 AM1.5G SUN을 기준으로 하여 Solar simulator로 효율을 측정하였다. 측정결과 Jsc값의 증가를 효율이 향상됨을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.