• 제목/요약/키워드: ZnO:P

Search Result 950, Processing Time 0.03 seconds

Correlationship of the electrical, optical and structural properties of P-doped ZnO films grown by magnetron sputtering (마그네트론 스퍼터링에 의해 phosphorous 도핑된 ZnO 박막의 전기적, 광학적, 구조적 특성의 연관성)

  • Ahn, Cheol-Hyoun;Kim, Young-Yi;Kang, Si-Woo;Kong, Bo-Hyun;Han, Won-Suk;Cho, Hyung-Koun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.177-177
    • /
    • 2007
  • ZnO는 3.36eV의 넓은 밴드캡을 가지는 II-IV족 반도체로써 태양전지, LED와 같은 광학적 소자로 이용이 기대가 되는 물질이다. 더욱이, 상온에서의 60meV에 해당하는 큰 엑시톤 에너지와 밴드캡 에지니어링이 가능하다는 장점 때문에 광학적 소자로 널리 이용되고 있는 GaN을 대체할 수 있는 물질로 주목을 받고 있다. 하지만, p-type ZnO는 형성이 어렵고 낮은 이동도와 케리어 농도의 특성을 보이고, 대기 중에 장시간 노출할 경우 n-type ZnO의 특성으로 돌아가는 불안정성을 보이고 있다. 최근에 몇몇의 연구자들에 의해 V족의 원소인 P(phosphorous), N(nitrogen), As(arsenic))를 도핑하여 p-type ZnO의 형성에 대한 논문이 발표되고 있다. 또한, V족 원소 중에 P는 p-type ZnO 형성에 효과적인 도핑 물질로 보고되 고 있다. 본 연구는 마그네트론 스퍼터링을 이용하여 다양한 온도에서 성장된 P도핑 ZnO 박막의 특성에 대해 연구하였다. P도핑된 ZnO 박막은 사파이어 기판에 buffer층을 사용한 Insulator 특성의 ZnO박막위에 400, 500, 600, $700^{\circ}C$에서 성장되 었다. 박막의 특성 분석에는 325nm의 파장을 가지는 He-Cd의 레이져 광원을 사용하여 10K의 저온 PL과 0.5T의 자기장을 사용한 van der Pauw configuration에 의한 Hall effect측정, 그리고 결정성 분석에는 XRD와 TEM을 이용하였다. 상온 Hall-effect 측정 결과, $400{\sim}600^{\circ}C$ 에서 성장된 박막은 n-type의 특성을 보였고, $700^{\circ}C$에서 성장된 Phosphorous 도핑 ZnO박막은 $1.19{\times}10^{17}$의 캐리어 농도를 가지는 p-type의 특성을 보였다. 그리고 XRD분석과 TEM분석을 통하여 박막의 성장온도가 증가 할수록 P도핑된 ZnO박막의 결정성이 향상되는 것을 알 수 있었다. 또한 10K의 저온 PL분석을 통해 p도핑에 의한 액셉터에 관련된 피크들을 관찰할 수 있었다.

  • PDF

Implementation of High Carrier Mobility in Al-N Codoped p-Type ZnO Thin Films Fabricated by Direct Current Magnetron Sputtering with ZnO:Al2O3 Ceramic Target

  • Jin, Hujie;Xu, Bing;Park, Choon-Bae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.4
    • /
    • pp.169-173
    • /
    • 2011
  • In this study, Al-N codoped p-type zinc oxide (ZnO) thin films were deposited on Si and homo-buffer layer templates in a mixture of $N_2$ and $O_2$ gas with ceramic ZnO:(2 wt% $Al_2O_3$) as a sputtering target using DC- magnetron sputtering. X-ray diffraction spectra of two-theta diffraction showed that all films have a predominant (002) peak of ZnO Wurtzite structure. As the $N_2$ fraction in the mixed $N_2$ and $O_2$ gases increased, field emission secondary electron microscopy revealed that the surface appearance of codoped films on Si varied from smooth to textured structure. The p-type ZnO thin films showed carrier concentration in the range of $1.5{\times}10^{15}-2.93{\times}10^{17}\;cm^{-3}$, resistivity in the range of 131.2-2.864 ${\Omega}cm$, and mobility in the range of $3.99-31.6\;cm^2V^{-1}s^{-1}$ respectively.

Study of n-ZnO/InGaN/p-GaN Lihgt Emitting Diodes

  • Gang, Chang-Mo;Nam, Seung-Yong;Gong, Deuk-Jo;Choe, Sang-Bae;Seong, Won-Seok;Lee, Dong-Seon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.322.2-322.2
    • /
    • 2014
  • Lighting emitting diodes of n-ZnO/MQW/p-GaN structure are fabricated and investigated. To realize this LED structure, n-ZnO/MQW/p-GaN are grown by MOCVD. At several bias voltages, blue-green light is emitted from the ZnO mesa edge. However, the emission is restricted near the mesa edge. It is seen that the hole current does not spread well. It is because conductivity of p-GaN is extremely small. The break down voltage of the device is small compared to conventional InGaN/GaN LEDs. It is seen that ZnO columnar grain boundaries act as leakage current paths and non-radiative recombination center.

  • PDF

Highly sensitive xylene sensors using Fe2O3-ZnFe2O4 composite spheres

  • Chan, Jin Fang;Jeon, Jae Kyoung;Moon, Young Kook;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.191-195
    • /
    • 2021
  • Pure ZnFe2O4 and Fe2O3-ZnFe2O4 hetero-composite spheres were prepared by ultrasonic spray pyrolysis of a solution containing Zn- and Fe-nitrates. Additionally, the sensing characteristics of these spheres in the presence of 5 ppm ethanol, benzene, p-xylene, toluene, and CO (within the temperature range of 275-350 ℃) were investigated. The Fe2O3-ZnFe2O4 hetero-composite sensor with a cation ratio of [Zn]:[Fe]=1:3 exhibited a high response (resistance ratio = 140.2) and selectivity (response to p-xylene/response to ethanol = 3.4) to 5 ppm p-xylene at 300 ℃, whereas the pure ZnFe2O4 sensor showed a comparatively lower gas response and selectivity. The reasons for the superior response and selectivity to p-xylene in Fe2O3-ZnFe2O4 hetero-composite sensor were discussed in relation to the electronic sensitization due to charge transfer at Fe2O3-ZnFe2O4 interface and Fe2O3-induced catalytic promotion of gas sensing reaction. The sensor can be used to monitor harmful volatile organic compounds and indoor air pollutants.

Fabrication of ZnO and CuO Nanostructures on Cellulose Papers

  • Nagaraju, Goli;Ko, Yeong Hwan;Yu, Jae Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.315.1-315.1
    • /
    • 2014
  • The use of cellulose papers has recently attracted much attention in various device applications owing to their natural advantageous properties of earth's abundance, bio-friendly, large-scale production, and flexibility. Conventional metal oxides with novel structures of nanorods, nanospindles, nanowires and nanobelts are being developed for emerging electronic and chemical sensing applications. In this work, both ZnO (n-type) nanorod arrays (NRAs) and CuO (p-type) nanospindles (NSs) were synthesized on cellulose papers and the p-n junction property was investigated using the electrode of indium tin oxide coated polyethylene terephthalate film. To synthesize ZnO and CuO nanostructures on cellulose paper, a simple and facile hydrothermal method was utilized. First, the CuO NSs were synthesized on cellulose paper by a simple soaking process, yielding the well adhered CuO NSs on cellulose paper. After that, the ZnO NRAs were grown on CuO NSs/cellulose paper via a facile hydrothermal route. The as-grown ZnO/CuO NSs on cellulose paper exhibited good crystalline and optical properties. The fabricated p-n junction device showed the I-V characteristics with a rectifying behaviour.

  • PDF

The Electrical and Microstructural Properties of ZnO:N Thin Films Grown in The Mixture of $N_2$ and $O_2$ by RF Magnetron Sputtering

  • Jin, Hu-Jie;Lee, Eun-Cheal;So, Soon-Jin;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.144-145
    • /
    • 2006
  • ZnO is a promising material to make high efficiency violet or blue light emitting diodes (LEDs) for its large binding energy (60meV) and big bandgap. But the high quality p-type conduction of ZnO is a dilemma to achieve LEDs with it. In present study, we presented a reliable method to prepare ZnO thin films on (100)silicon substrates by RF magnetron sputtering in the mixture ambient of $N_2$ and $O_2$, accompanying with low pressure annealing in the sputtering chamber in $O_2$ at $600^{\circ}C$ and $800^{\circ}C$ respectively. X-ray diffraction and Hail effect with Van der Paul method were performed to test ZnO films. Seeback effect was also carried out to identify carrier types in ZnO films and showed the N-doped ZnO film annealed at $800^{\circ}C$ had achieved p-type conduction.

  • PDF

Synthesis of ZnO Powder by Precipitation method and Its Cathodoluminescence Properties (침전법에 의한 ZnO 분체합성 및 그 형광특성)

  • 김봉철;박지훈;신효순;이석기;이병교
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.2
    • /
    • pp.107-114
    • /
    • 1998
  • ZnO powder as phosphor was prepared by precipitation method with zinc acetate and ammonia solution and the size and shapes of precipitates were examined with variation of pH and concentration of solution. Its cathodoluminesence properties was evaluated with various heat tratment condition. Optimum con-dition for uniform precipitates was 11.8 of pH and 0.4M of concentration. ZnO:Zn phosphor was obtained by heat treatment of precipitates in reduction atmosphere using ZnS powder. With addition of 20wt% ZnS and 1 hour firing at 1000$^{\circ}C$ the highest cathodoluminescence was obtained.

  • PDF

Structure and Antibacterial Property of ZnO-B2O3-P2O5 Glasses

  • Bae, Jun-Hyeon;Cha, Jae-Min;Kim, Dae-Sung;Kim, Young-Seok;Ryu, Bong-Ki
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.2
    • /
    • pp.135-139
    • /
    • 2018
  • The glass structure and antibacterial properties of $(65-x)ZnO-xB_2O_3-35P_2O_5$ glasses were investigated. Zinc borophosphate glasses were prepared using a conventional melt-quenching technique at $1000^{\circ}C$. Glass transition temperature and CTE were studied and the structure of zinc borophosphate glasses was evaluated by FTIR. The $Zn^{2+}$ state increase with increasing ZnO content was investigated by XPS and a single sharp Zn $2P_{3/2}$ peak was confirmed, showing that Zn $2P_{3/2}$ exists as $Zn^{2+}$. In order to to evaluate the antimicrobial activity, Escherichia coli (E. coli) was used following the Japanese Industrial Standard JIS Z 2801; the E. coli death rate was found to increase with increasing $Zn^{2+}$ content of glasses.

Morphology control and optical properties of ZnO nanostructures grown by ultrasonic synthesis

  • Morales-Flores, N.;Galeazzi, R.;Rosendo, E.;Diaz1d, T.;Velumani, S.;Pal, U.
    • Advances in nano research
    • /
    • v.1 no.1
    • /
    • pp.59-70
    • /
    • 2013
  • ZnO nanostructures of rod-like, faceted bar, cup-end bars, and spindle shaped morphologies could be grown by a low power ultrasonic synthesis process. pH of the reaction mixture seems to plays an important role for defining the final morphology of ZnO nanostructures. While the solution pH as low as 7 produces long, uniform rod-like nanostructures of mixed phase (ZnO and $Zn(OH)_2$), higher pH of the reaction mixture produces ZnO nanostructures of different morphologies in pure hexagonal wurtzite phase. pH of the reaction as high as 10 produces bar shaped uniform nanostructures with lower specific surface area and lower surface and lattice defects, reducing the defect emissions of ZnO in the visible region of their photoluminescence spectra.

ZnO nanostructures 이용한 유/무기 하이브리드 태양전지의 특성평가

  • Kim, Yeong-Tae;Park, Mi-Yeong;Park, Seon-Yeong;Lee, Gyu-Hwan;Kim, Yang-Do;Jeong, Yong-Su;Im, Dong-Chan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.99-99
    • /
    • 2009
  • 차세대 대체에너지로서 유기태양전지는 저비용, flexible한 장점이 있다. 그러나 에너지 효율이 상대적으로 낮아 고효율 유기태양전지 개발이 필요하다. 이 문제를 개선하기위해 본 실험에서는 전기화학적인 방법으로 ZnO 나노구조체 (nanowire, film)를 ITO위에 전착하였다. ZnO 나노구조체는 Poly(3-hexylthiophene)(P3HT):[6,6]-Phnyl-C61-butyric acid methyl ester (PCBM)에서 엑시톤된 전자와 홀의 charge collector와 electron path way로서 사용되었다. 유/무기 하이브리드 태양전지의 구조는 Ag/P3HT:PCBM/(A)/ITO로 사용하였으며 (A)는 (1) ZnO nanowire/ZnO film (2)ZnO nanowire (3)ZnO film으로, 각각의 효율을 측정하였다. 생성된 ZnO 나노구조를 FE-SEM, XRD, TEM, UV/vis로 분석하였고 AM1.5G SUN을 기준으로 하여 Solar simulator로 효율을 측정하였다. 측정결과 Jsc값의 증가를 효율이 향상됨을 알 수 있었다.

  • PDF