• Title/Summary/Keyword: ZnC$l_{2}$-6$H_{2}O$

Search Result 57, Processing Time 0.029 seconds

Use of hot water, combination of hot water and phosphite, and 1-MCP as post-harvest treatments for passion fruit (Passiflora edulis f. flavicarpa) reduces anthracnose and does not alter fruit quality

  • Dutra, Jaqueline Barbosa;Blum, Luiz Eduardo Bassay;Lopes, Leonardo Ferreira;Cruz, Andre Freire;Uesugi, Carlos Hidemi
    • Horticulture, Environment, and Biotechnology : HEB
    • /
    • v.59 no.6
    • /
    • pp.847-856
    • /
    • 2018
  • This research aimed to evaluate the effectiveness of hot water ($43-53^{\circ}C{\cdot}5min^{-1}$; $47^{\circ}C{\cdot}2-6min^{-1}$), 1-methylcyclopropene (1-MCP) at $50-300nL\;L^{-1}$ and a combination of hot water ($47/49^{\circ}C{\cdot}5min^{-1}$) and phosphite $40%\;P_2O_5+20%\;K_2O$;$40%\;P_2O_5+10%\;Zn$) in anthracnose control and the effect on fruit quality [fresh weight loss (FWL-%); pH, total soluble solids ($TSS-^{\circ}Brix$), and titratable acidity (TA = % citric acid (CA)] of passion fruit ( Passiflora edulis f. flavicarpa ) at the postharvest stage. When the fruits were in the stage of 0% dehydration and fully yellow peels, they were disinfested and inoculated with Colletotrichum gloeosporioides. They were then subjected to the above mentioned treatments; this was followed by incubation for 120 h. The diameter of the disease lesions was monitored daily. After the incubation, a physico-chemical analysis was performed. Hot-water treatment resulted in disease reduction at 47 and $49^{\circ}C$ for 4 and 5 min. The combination of hot-water treatment at $47^{\circ}C$ (4 or 5 min) and application of the phosphite of K or Zn significantly reduced disease severity in fruits. The 1-MCP treatment reduced anthracnose severity in passion fruit mainly at $200nL\;L^{-1}{\cdot} 24h^{-1} $. None of the treatments significantly changed the physico-chemical characteristics of the fruit [FWL (2.6-4.1%); pH (3.2-3.5), TSS ($8.9-10.9^{\circ}Brix$), and TA (1.8-2.5% CA)].

Isolation and Optimal Producing Conditions of Broad Spectrum Antibiotics from Streptomyces sp. Y-88 (광범위 항생물질을 생산하는 Streptomyces sp. Y-88의 분리 및 생산 최적 조건)

  • Bang, Byung-Ho;Jeong, Eun-Ja
    • The Korean Journal of Food And Nutrition
    • /
    • v.22 no.1
    • /
    • pp.103-109
    • /
    • 2009
  • In order to isolate antibiotic producing microorganisms, several actinomycetes were isolated from soil samples. The aerial hyphae of Y-88 strain were gray in color with tree types. Under the microscopic examination, the Y-88 isolate formed a spiral aerial spore mass with a smooth surface and a rectiflexibilis type of spore chain. Y-88 utilized glucose, fructose, arabinose, and sucrose, but not rhamnose, raffinose, mannitol, or inositol. In addition, Y-88 produced melanin on the tyrosine agar and the strain could utilize L-valine, L-phenylalanine, and L-hydroxyproline. Based on these results and the cultural and physiological characteristics described in the Bergey's Manual, the Actinomycetes, Y-88, was identificated as a Streptomyces species. The optimum medium conditions for this antibiotic producing Streptomyces sp. Y-88 was 1.6% soluble starch, 0.6% glucose, 0.6% beef extract, 0.01% $K_2HPO_4$, 0.01% $MgSO_4$ $7H_2O$, and 0.01% $ZnSO_4$ $7H_2O$ at an initial pH of 4.0, and 25$^{\circ}C$.

Crystal Structure of Two-Dimensional Bis(isonicotinato)tet-raaquazinc(II) Complex Linked by Hydrogen-Bonds (수소 결합에 의한 이차원의 Bis(isonicotinato)tetraaquazinc(II) 착물의 결정구조)

  • Park, Ki-Young;Kim, Moon-Jip;Suh, Il-Hwan
    • Korean Journal of Crystallography
    • /
    • v.13 no.1
    • /
    • pp.17-20
    • /
    • 2002
  • The complex [Zn(L)₂(H₂O)₄] (1) (L = isonicotinate) has been prepared and characterized by X-ray crystallography. Compound 1 crystallizes in the triclinic space group P1, with a = 6.9062(4) , b = 9.2618(7) , c = 6.3313(3) , α = 104.986(6)°, β = 112.865(4)°, γ = 96.213(6)°, V = 350.41(4) , Z = 1, R₁(wR₂) for 1225 observed reflections of [I > 2σ(I)] was 0.0209 (0.0591). The coordination environment of the zinc atom can be described as an octahedron in which the isonicotinato ligands are mutually trans. Compound 1 is also connected into a two-dimensional chain via hydrogen-bonds.

Submerged Culture of Phellinus linteus for Mass Production of Polysaccharides

  • Lee, June-Woo;Baek, Seong-Jin;Kim, Yong-Seok
    • Mycobiology
    • /
    • v.36 no.3
    • /
    • pp.178-182
    • /
    • 2008
  • In order to increase the mycelial production of Phellinus linteus, which exhibits potent anticancer activity, some ingredients of the medium used to culture P. linteus were investigated. The optimal medium composition for the production of Phellinus linteus was determined to be as follows: fructose, 40 g/l; yeast extract, 20 g/l; $K_2HPO_4$, 0.46 g/l; $K_2HPO_4$, 1.00 g/l; M$MgSO_4\cdot7H_2SO$, 0.50 g/l; $FeCl_2\cdot6_2O$, 0.01 g/l; $MnCl_2\cdot4H_2O$, 0.036 g/l; $ZnCl_2$, 0.03 g/l; and $SuSO_4\cdot7H_2O$, 0.005 g/l. The optimal culture conditions were determined to be as follows: temperature, 28$^{\circ}C$; initial pH, 5.5; aeration, 0.6 vvm; and agitation, 100 rpm, respectively. Under optimal composition and conditions, the maximum mycelial biomass achieved in a 5 l jar fermentor was 29.9 g/l.

Synthesis and Formation Mechanism of Cobalt Doped Willemite Blue Pigments (Co-Doped Willemite 파란색 안료의 합성과 생성기구)

  • Hwang, Dong-Ha;Han, Kyong-Sop;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.603-607
    • /
    • 2010
  • Turquoise blue pigment of Vanadium-zircon blue (DCMA number 14-42-2), which was already commercialized, was stable to be reproduced but insufficient to give strong blue. However, it possible to obtain more intense blue by partially substituting cobalt ions into the willemite($Zn_2SiO_4$) lattice classified into DCMA number 7-10-2 for blue ceramic pigment. By the composition of willemite $Co_xZn_{2-x}SiO_4$(X=0.01, 0.03, 0.05, 0.07, 0.09 mole), this study used reagent grade zinc oxide, cobalt oxide and silicon dioxide as starting materials, carrying out the synthesis with solid reaction method by adding $H_3BO_3$ as a mineralizer. The firing temperature was between $1200^{\circ}C$ and $1400^{\circ}C$. The characteristics of synthesized pigment were analyzed by X-ray diffraction, Raman spectroscopy and SEM and the characteristics of color tones were analyzed by UV-Vis spectroscopy and CIE-$L^*a^*b^*$ measurement. As a result, the optimal composition was $Zn_{1.95}Co_{0.05}$ with 1wt% of $H_3BO_3$ as a mineralizer and firing condition was $1350^{\circ}C$/3 h. $L^*a^*b^*$ value was 29.25, 41.03, -59.93 for on glaze pigment and 37.03, 36.41, -60.03 for under glaze pigment.

Microstructure of ZnO Thin Film on Nano-Scale Diamond Powder Using ALD (나노급 다이아몬드 파우더에 ALD로 제조된 ZnO 박막 연구)

  • Park, S.J.;Song, S.O.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.6
    • /
    • pp.538-543
    • /
    • 2008
  • Recently a nano-scale diamond is possible to manufacture forms of powder(below 100 nm) by new processing of explosion or deposition method. Using a sintering of nano-scale diamond is possible to manufacture of grinding tools. We have need of a processing development of coated uniformly inorganic to prevent an abnormal grain growth of nano-crystal and bonding obstacle caused by sintering process. This paper, in order to improve the sintering property of nano-scale diamond, we coated ZnO thin films(thickness: $20{\sim}30\;nm$) in a vacuum by ALD(atomic layer deposition) Economically, in order to deposit ZnO all over the surface of nano-scale diamond powder, we used a new modified fluidized bed processing replaced mechanical vibration effect or fluidized bed reactor which utilized diamond floating owing to pressure of pulse(or purge) processing after inserted diamond powders in quartz tube(L: 20 mm) then closed quartz tube by porosity glass filter. We deposited ZnO thin films by ALD in closed both sides of quartz tube by porosity glass filter by ALD(precursor: DEZn($C_4H_{10}Zn$), reaction gas: $H_2O$) at $10^{\circ}C$(in canister). Processing procedure and injection time of reaction materials set up DEZn pulse-0.1 sec, DEZn purge-20 sec, $H_2O$ pulse-0.1 sec, $H_2O$ purge-40 sec and we put in operation repetitive 100 cycles(1 cycle is 4 steps) We confirmed microstructure of diamond powder and diamond powder doped ZnO thin film by TEM(transmission electron microscope) Through TEM analysis, we confirmed that diamond powder diameter was some $70{\sim}120\;nm$ and shape was tetragonal, hexagonal, etc before ALD. We confirmed that diameter of diamond powders doped ZnO thin film was some $70{\sim}120\;nm$ and uniform ZnO(thickness: $20{\sim}30\;nm$) thin film was successfully deposited on diamond powder surface according to brightness difference between diamond powder and ZnO.

The Manufacturing and Properties of Spinel Ferrite Film In Aqueous Solution (수용액에서의 스피넬형 자성박막의 제작과 그 특성)

  • Kim, M.H.;Jang, K.U.;Choi, M.K.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11a
    • /
    • pp.4-6
    • /
    • 1999
  • We have performed spin-spray ferrite plating of $Fe_{3-x}Zn_xO_4$($X=0.47{\sim}0.97$) films in the temperature region T=85[$^{\circ}C$]. A reaction solution and an oxidizing solution were supplied to a reaction chamber by supply pumps. The Zn composition X in the $Fe_{3-x}Zn_xO_4$ Film increases as the content of $ZnCl_2$ increase, from X=0.47 at O.05[g/l] to X=0.97 at 0.15[g/l]. All the films are polycrystalline with no preferential orientation, and the magnetization exhibits no definite anisotropy. Grain size in the films increases as X increases, reaching 0.98[${\mu}m$] at X=0.97.

  • PDF

Purification and Identification of Antioxidant Compounds from Dolichos lablab L. Seeds (백편두의 항산화 물질 분리 및 동정)

  • Kwon, Nam Woo;Kim, Jae Yeon;Cho, Yong Beom;Hwang, Bang Yeon;Kim, Jun Gu;Woo, Sun Hee;Lee, Moon Soon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.27 no.6
    • /
    • pp.419-426
    • /
    • 2019
  • Background: This study aimed to identify antioxidant compounds from the seeds of Dolichos lablab L. by bioassay-guided isolation and recrystallization. Methods and Results: The water layer of D. lablab L. seed extract inhibits intracellular reactive oxygen species (ROS) expressing the 2',7'-dichlorofluorescein diacetate (DCF-DA), Cu/Zn superoxide dismutase (SOD) and catalase genes, as determined by quantitative real-time PCR (qRT-PCR). Two compounds were purified from the water layer of the seeds of D. lablab L. using column chromatography and prep-high performance liquid chromatography (HPLC). Using nuclear magnetic resonance (NMR) and electrospray Ionization mass spectrometry (ESI-MS), their chemical structures were identified as 5-[(2-acetyl-2,3-dihydro-1H-indazol-1-yl)carbonyl]-4,5-dihydro-3H-furan-2-one (C14H14N2O4) and stachyose. Conclusions: Two active antioxidant compounds were purified from the seed extract of D. lablab L. seed extract and the structures of these compounds were identified as C14H14O4N2 and stachyose.

A Study of Soil and Water Pollutions in Kyungsan Province (경산지역 토양 및 수질오염에 관한 연구)

  • 김용태;이부용;김동석;양소영;이동훈;박병윤
    • Journal of Environmental Science International
    • /
    • v.11 no.7
    • /
    • pp.713-720
    • /
    • 2002
  • In order to provide the basic information on the environmental pollution of Kyungsan province, the contents of Pb, Cd, Cr, Cu, Mn and Zn in soil, stream water, aquatic sediment and groundwater were investigated, and also the values of pH, COD, $KMnO_4-C$,\;NH_3-N,\;NO_2-N,\;NO_3-N$ and $Cl^-$ of stream water and groundwater were determined. The results were as follows. The values of COD, $NH_3-N,\;NO_2-N$ and $NO_3-N$ of the stream waters were very low. The contents of Pb, Cd, Cr, Cu and Zn in the stream waters were respectively at range of $0.014~0.063 mg/{\ell},\;0.004~0.007 mg/{\ell$\mid$, 0~0.045 mg/{\ell},\;0~0.008 mg/{\ell}$\;and\;$0.001~0.175 mg/{\ell}$, and these values were much lower than those of contaminated stream water in Korea. The contents of Cd, Cr, Cu and Zn in the soils were respectively at range of 0.12~O.71 ppm, 0.88~2.65 ppm, 2.86~22.33 ppm and 3.89~26.39 ppm, and these values were much lower than those of ordinary polluted areas in Korea. The contents of Cd, Cr, Cu, As, Zn and Mn in the aquatic sediments were respectively at range of 3.05~3.81 ppm, 14.6~70.6 ppm, 13.74~61.59 ppm, 76.8~465.5 ppm, 12.56~190.83 ppm and 333.3~l188.3 ppm. The values of pH, $KMnO_4-C,\;NH_3-N$, and $NO_3-N$ of the groundwaters were respectively at range of 7.6~8.4, $0~3.95{\ell}$, 0.05~0.15 mg/{\ell}$ and 0.05~0.42 $mg/{\ell}$. The contents of Pb, Cd and Cr in the groundwaters were respectively at range of 0.015~0.061 $mg/{\ell}$, 0.O06~0.009 $mg/{\ell}$ and 0.005~0.045 $mg/{\ell}$.

Purification and Characterization of Polyphenol Oxidase from Flammulina velutipes (팽나무버섯 polyphenol oxidase의 정제 및 특성)

  • Pyo, Han-Jong;Son, Dae-Yeul;Lee, Chan
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.552-558
    • /
    • 2002
  • Polyphenol oxidase from Flammulina velutipes was purified and characterized. Purification of polyphenol oxidase was achieved by ammonium sulfate precipitation, Superdex G-200 gel filtration chromatography, Phenyl superose affinity chromatography, Mono-Q anion exchange chromatography and Superdex S-200 gel filtration chromatography on FPLC. After these purification steps specific activity of purified polyphenol oxidase increased to 199.1 units/mg. Polyphenol oxidase from F. velutipes was composed of a single polypeptide with molecular weight of about 40 kDa. Optimum pH and temperature for the enzyme reaction were found to be 6.0 and $25^{\circ}C$, respectively. The activity of the enzyme gradually decreased at acidic pH between 3 and 5, and the enzyme lost its activity at alkaline pH between 8 and 10. This enzyme exhibited high substrate specificity to o-diphenols. Km-values for L-DOPA and caffeic acid were found to be 3.97 mM and 1.78 mM, respectively. 2-mercaptoethanol, L-ascorbic acid, sodium bisulfite, EDTA and $Mg^{2+}$ inhibited the activity of pholyphenol oxidase and $Cu^{2+}$, $Fe^{2+}$, $Zn^{2+}$ and $Ni^{2+}$ increased enzyme activity. The activity of enzyme was well maintained at $-70^{\circ}C$ for over 4 months, and at $-20^{\circ}C$ for 1 months.