• Title/Summary/Keyword: Zn-superoxide dismutase

Search Result 233, Processing Time 0.031 seconds

ALTERATION OF SUPEROXIDE DISMUTASE-AND CATALASE-ACTIVITY IN HUMAN GINGIVAL TISSUES BY THE PERIODONTAL DISEASE SEVERITY (치주질환 심도에 따른 치은조직내의 Superoxide Dismutase와 Catalase의 활성변화에 관한 연구)

  • Kim, Byung-Ok;Kwon, Young-Hyuk;Lee, Man-Sup
    • Journal of Periodontal and Implant Science
    • /
    • v.24 no.1
    • /
    • pp.39-49
    • /
    • 1994
  • It has been believed that antioxidant enzymes such as CuZn- and Mn-superoxide dismutase and catalase protect the tissue from damage resulting from the oxygen derived free radicals($O_2\;^-$, $H_2O_2$ and OH ). The purpose of this study was to investigate the relationship between activity of antioxidant enzymes including CuZn- and Mn- superoxide dismutase and catalase and inflammatory periodontal disease and periodontal parameters. For this study, the patients were classified into normal, gingivitis, adult periodontitis and rapidly progressive periodontitis, and then their papillary bleeding index(PBI) and probing depth were checked. Gingival tissues were surgically obtained from the patients during periodontal surgery, extraction, and clinical crown lengthening procedure. The activity of CuZn- and Mn- superoxide dismutase and catalase in the gingival tissues was measured by using UV-spectrophotometer by the same methods as Crapo et al. And Aebi did, respectively. The results were as follows : 1. CuZn- and Mn- and total-superoxide dismutase activity were significantly low in rapidly progressive periodontitis group in comparison to normal group (P<0.05). 2. In comparison of the antioxidant enzyme activity according to papillary bleeding index group(PBI), Mn-superoxide dismutase activity only was significantly lower in PBI 2, 3, and 4 groups than PBI 0 group(P<0.05). 3. Superoxide dismutase activity failed to show any significant difference according to probing depth. But significant]y high catalase activity was shown in deep pocket group (${\ge}7mm$)(P<0.05). In conclusion, these results suggest that the activity of Mn-superoxide dismutase among the antioxidant enzymes may reflect the inflammatory status of gingival tissue and that the decreased activity of superoxide dismutase may be one of responsibe factors for progression of rapidly progressive periodontitis.

  • PDF

Cloning, DNA Sequence Determination, and Analysis of Growth-Associated Expression of the sodF Gene Coding for Fe- and Zn-Containing Superoxide Dismutase of Streptomyces griseus

  • Kim, Ju-Sim;Lee, Jeong-Kug
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.5
    • /
    • pp.700-706
    • /
    • 2000
  • Iron- and zinc-containing superoxide dismutase (FeZnSOD) and nickel-containing superoxide dismutase (NiSOD) are cytoplamic enzymes in Streptomyces griseus. The sodF gene coding for FeZnSOD was cloned from genomic Southern hybridization analysis with a 0.5-kb DNA probe, which was PCR-amplified with facing primers corresponding to the N-terminal amino acid of the purified FeZnSOD of S. griseus and a C-terminal region which is conserved among bacterial FeSODs and MnSODs. The sodF open reading frame (ORF) was comprised of 213 amino acid (22,430 Da), and the deduced sequence of the protein was highly homologous (86% identity) to that of FeZnSOD of Streptomyces coelicolor. The FeZnSOD expression of exponentially growing S. griseus cell was approximately doubled as the cell growth reached the early stationary phase. The growth-associated expression of FeZnSOD was mainly controlled at the transcriptional level, and the regulation was exerted through the 110 bp regulatory DNA upstream from the ATG initiation codon of the sodF gene.

  • PDF

Purification and Characterizatlon of a Cu, Zn-Superoxide Dismutase from Adult Paragonimus westermani (폐흡충 성충 Cu, Sn-Superoxide Dismutase의 정제 및 생화학적 특성)

  • 정영배;송철용
    • Parasites, Hosts and Diseases
    • /
    • v.29 no.3
    • /
    • pp.259-266
    • /
    • 1991
  • In cytosolic (raction of adult Paragonimus westermani, superoxide dismutase activity was identified (4.3 units/mg of specific activity) using a xanthine-xanthine oxidase system. The enzyme was purified 150 fold in its activity using the ammonium sulfate precipitation, DEAE-Trisacryl M anion-exchange chromatography and Sephadex G-100 molecular sieve chromatography. The enzyme exhibited the enhanced activity at pH 10.0. The enzyme activity totally disappeared in 1.0mM cyanide while it remained 77.8% even in 10 mM azide. These findings indicated that the ensyme was Cu, Zn-SOD type. Molecular mass of the enzyme was estimated to be 34 kDa by gel filtration and 17 kDa on reducing SDS-polyacrylamide gel electrophoresis which indicated a dimer protein.

  • PDF

Modification of Cu,Zn-Superoxide Dismutase by Oxidized Catecholamines

  • Kang, Jung-Hoon
    • BMB Reports
    • /
    • v.37 no.3
    • /
    • pp.325-329
    • /
    • 2004
  • Oxidation of catecholamines may contribute to the pathogenesis of Parkinson's disease (PD). The effect of the oxidized products of catecholamines on the modification of Cu,Zn-superoxide dismutase (SOD) was investigated. When Cu,Zn-SOD was incubated with the oxidized 3,4-dihydroxyphenylalanine (DOPA) or dopamine, the protein was induced to be aggregated. The deoxyribose assay showed that hydroxyl radicals were generated during the oxidation of catecholamines in the presence of copper ion. Radical scavengers, azide, N-acetylcysteine, and catalase inhibited the oxidized catecholamine-mediated Cu,Zn-SOD aggregation. Therefore, the results indicate that free radicals may play a role in the aggregation of Cu,Zn-SOD. When Cu,Zn-SOD that had been exposed to catecholamines was subsequently analyzed by an amino acid analysis, the glycine and histidine residues were particularly sensitive. These results suggest that the modification of Cu,Zn-SOD by oxidized catecholamines might induce the perturbation of cellular antioxidant systems and led to a deleterious cell condition.

Modification and inactivation of Cu,Zn-superoxide dismutase by the lipid peroxidation product, acrolein

  • Kang, Jung Hoon
    • BMB Reports
    • /
    • v.46 no.11
    • /
    • pp.555-560
    • /
    • 2013
  • Acrolein is the most reactive aldehydic product of lipid peroxidation and is found to be elevated in the brain when oxidative stress is high. The effects of acrolein on the structure and function of human Cu,Zn-superoxide dismutase (SOD) were examined. When Cu,Zn-SOD was incubated with acrolein, the covalent crosslinking of the protein was increased, and the loss of enzymatic activity was increased in a dose-dependent manner. Reactive oxygen species (ROS) scavengers and copper chelators inhibited the acrolein-mediated Cu,Zn-SOD modification and the formation of carbonyl compound. The present study shows that ROS may play a critical role in acrolein-induced Cu,Zn-SOD modification and inactivation. When Cu,Zn-SOD that has been exposed to acrolein was subsequently analyzed by amino acid analysis, serine, histidine, arginine, threonine and lysine residues were particularly sensitive. It is suggested that the modification and inactivation of Cu,Zn-SOD by acrolein could be produced by more oxidative cell environments.

Effects of Cadmium on Superoxide Radical Superoxide Dismutase, Catalase and ATPase Activit in liver, Kidney and Testicle of Rats in Vitro and in Vivo (시험관내 및 생체내로 투여한 카드뮴이 랏트의 간, 신 및 고환조직 내의 Superoxide Radical, Superoxide Dismutase, Catalase 및 ATPase 활성도에 미치는 영향)

  • Kim, Sung-Moo;Chung, Kyou-Chull
    • Journal of Preventive Medicine and Public Health
    • /
    • v.23 no.4 s.32
    • /
    • pp.371-390
    • /
    • 1990
  • Production of free radicals of superoxide anion in tissues by cadmium, activities of superoxide dismutase and catalase to protect tissue damages caused by the free radicals and ATPase that plays an important role in energy metabolism at cellular level were investigated. Experiments in vivo were conducted with liver, kidney and testicle tissue homogenates of rats adding $0.05{\sim}0.50mM$ cadmium chloride, and in vivo experiments administering single dose of 5 mg of cadmium/kg of body weight in 0.1% cadmium chloride solution intraperitoneally 48 hours prior to evisceration. Production of superoxide radicals in liver and testicle increased with addition of cadmium in vitro, but not in kidney. In vivo experiments, however, superoxide radicals slightly increased in liver and kidney but not in testicle. Superoxide dismutase (Cu, Zn-SOD and Mn-SOD), catalase and ATPase (total, $Mg^{++}-\;&\;Na^+,\;K^+-$) activity decreased in the presence of cadimium in dose dependent manner. Reduction of these enzyme activities varied not only with dosage of cadmium but also with type of tissue and between in vitro and in vivo experiment.

  • PDF

Salsolinol, a Tetrahydroisoquinoline Catechol Neurotoxin, Induces Human Cu,Zn-superoxidie Dismutase Modificaiton

  • Kang, Jung-Hoon
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.684-689
    • /
    • 2007
  • The endogenous neurotoxin, 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol), has been considered a potential causative factor for the pathogenesis of Parkinson's disease (PD). In the present study, we examined the pattern of human Cu,Zn-superoxide dismutase (SOD) modification elicited by salsolinol. When Cu,Zn-SOD was incubated with salsolinol, some protein fragmentation and some higher molecular weight aggregates were occurred. Salsolinol led to inactivation of Cu,Zn-SOD in a concentration-dependent manner. Free radical scavengers and catalase inhibited the salsolinol-mediated Cu,Zn-SOD modificaiton. Exposure of Cu,Zn-SOD to salsolinol led also to the generation of protein carbonyl compounds. The deoxyribose assay showed that hydroxyl radicals were generated during the oxidation of salsolinol in the presence of Cu,Zn-SOD. Therefore, the results indicate that free radical may play a role in the modification and inactivation of Cu,Zn-SOD by salsolinol.

Cu,Zn-Superoxide Dismutase Is an Intracellular Catalyst for the H2O2-dependent Oxidation of Dichlorodihydrofluorescein

  • Kim, Young-Mi;Lim, Jung-Mi;Kim, Byung-Chul;Han, Sanghwa
    • Molecules and Cells
    • /
    • v.21 no.1
    • /
    • pp.161-165
    • /
    • 2006
  • Dichlorodihydrofluorescein ($DCFH_2$) is a widely used probe for intracellular $H_2O_2$. However, $H_2O_2$ can oxidize $DCFH_2$ only in the presence of a catalyst, whose identity in cells has not been clearly defined. We compared the peroxidase activity of Cu,Zn-superoxide dismutase (CuZnSOD), cytochrome c, horseradish peroxidase (HRP), $Cu^{2+}$, and $Fe^{3+}$ under various conditions to identify an intracellular catalyst. Enormous increase by bicarbonate in the rate of $DCFH_2$ oxidation distinguished CuZnSOD from cytochrome c and HRP. Cyanide inhibited the reaction catalyzed by CuZnSOD but accelerated that by $Cu^{2+}$ and $Fe^{3+}$. Oxidation of $DCFH_2$ by $H_2O_2$ in the presence of a cell lysate was also enhanced by bicarbonate and inhibited by cyanide. Confocal microscopy of $H_2O_2$-treated cells showed enhanced DCF fluorescence in the presence of bicarbonate and attenuated fluorescence for the cells pre-incubated with KCN. Moreover, DCF fluorescence was intensified in CuZnSOD-transfected HaCaT and RAW 264.7 cells. We propose that CuZnSOD is a potential intracellular catalyst for the $H_2O_2$-dependent oxidation of $DCFH_2$.

Inactivation of Copper, Zinc Superoxide Dismutase by the Lipid Peroxidation Products Malondialdehyde and 4-Hydroxynonenal

  • Koh, Young-Ho;Yoon, Seon-Joo;Park, Jeen-Woo
    • BMB Reports
    • /
    • v.32 no.5
    • /
    • pp.440-444
    • /
    • 1999
  • Membrane lipid peroxidation processes yield reactive aldehydes that may react with copper,zinc superoxide dismutase (Cu,Zn SOD), one of the key antioxidant enzymes against oxidative stress. We investigated this possibility and found that exposing Cu,Zn SOD to malondialdehyde (MDA) or 4-hydroxynonenal (HNE) caused the loss of dismutase activity, cross-linking of peptides, and an increase in protein oxidation, reflected by the increased level of carbonyl groups. When Cu,Zn SOD that had been exposed to MDA or HNE was subsequently analyzed by amino acid analysis, histidine content was found to be significantly lost. Both MDA-and HNE-treated Cu,Zn SOD were resistant to proteolysis, which may imply that damaged proteins exist in vivo for a longer period of time than the native enzyme. The lipid peroxidation-mediated damage to Cu,Zn SOD may result in the perturbation of cellular antioxidant defense mechanisms, and subsequently lead to a pro-oxidant condition.

  • PDF