• Title/Summary/Keyword: Zn supplementation

Search Result 135, Processing Time 0.025 seconds

Effects of Dietary Zinc Level and an Inflammatory Challenge on Performance and Immune Response of Weanling Pigs

  • Sun, Guo-jun;Chen, Dai-wen;Zhang, Ke-ying;Yu, Bing
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.9
    • /
    • pp.1303-1310
    • /
    • 2009
  • Two experiments were conducted to determine the effect of dietary zinc level on growth performance and immune function in normal (Experiment 1) and immunologically challenged (Experiment 2) weanling pigs. Treatments consisted of the following: i) a corn-soybean meal basal diet containing 36.75 mg/kg total Zn, ii) basal diet+60 mg/kg added Zn as $ZnSO_{4}$, iii) basal diet+120 mg/kg added Zn as $ZnSO_{4}$. Each diet was fed to six pens of four pigs per pen (Exp. 1) or six pens of three pigs per pen (Exp. 2). In Exp. 1, the dietary zinc level had no effect on average daily growth (ADG), average daily feed intake (ADFI), or feed conversion ratio (FCR). Concentrations of tissue and serum zinc were not affected. Peripheral blood lymphocyte proliferation (PBLP) was not affected by dietary treatments. Supplementation of 120 mg/kg Zn decreased (p<0.05) the antibody response to bovine serum albumin (BSA) on d 7 compared with pigs fed the basal diet, but not on d 14. In Exp. 2, LPS challenge had no effect on ADG, ADFI and FCR in the entire trial (from d 0 to 21). LPS challenge significantly decreased ADG and ADFI (p<0.01) from d 7 to 14, but FCR was not affected. LPS challenge increased PBLP (p<0.05) and serum concentration of interleukin-1 (IL-1) (p<0.01), whereas the antibody response to BSA and serum concentration of interleukin-2 (IL-2) were not affected. Supplementation of Zn did not affect ADFI and FCR from d 7 to 14, but there was a trend for ADG to be enhanced with Zn supplementation (p<0.10). Supplementation of Zn tended to increase PBLP (p<0.10). Dietary treatment had no effect on the antibody response to BSA or concentrations of serum IL-1 and IL-2. Results indicate that the level of Zn recommended by NRC (1998) for weanling pigs was sufficient for optimal growth performance and immune responses. Zn requirements may be higher for pigs experiencing an acute phase response than for healthy pigs.

Effect of Varying Levels of Dietary Minerals on Growth and Nutrient Utilization in Lambs

  • Sharma, L.C.;Yadav, P.S.;Mandal, A.B.;Sunaria, K.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.1
    • /
    • pp.46-52
    • /
    • 2004
  • Hisardale male lambs (n=24, 4-5 month of age) were maintained on a conventional ration for a month, to equilibrate the body mineral status. Six lambs were sacrificed after one month of feeding; the samples of organs were analyzed to ascertain mineral status. The remaining 18 lambs were divided into 3 groups of 6 each on body weight basis. Three dietary treatments containing 100 ($T_1$), 110 ($T_2$) and 120% ($T_3$) of minerals (Ca, P, S, Zn and Mn) as specified by NRC (1985) were formulated and each treatment was alloted ad libitum to a group for 120 days. Blood and wool samples were collected at monthly intervals. At the end of the experiment a balance trial of 5 days duration was conducted to study the balance of mineral elements. The effective intake of minerals was Ca, 111 and 120, P, 110 and 122; S, 112 and 129; Zn, 112 and 126 and Mn, 109 and 123 percent in $T_2$ and $T_3$, respectively, in comparison to $T_1$ (100). The additional mineral supplementation had no significant effect on dry matter intake. The average daily weight gain was higher (p<0.01) in $T_2$ and $T_3$ than the control ($T_1$). The lambs under treatments $T_2$ (8.72) and $T_3$ (8.47 kg) consumed apparently lesser amount of dry matter per unit gain as compared to $T_1$ (10.81 kg). Significantly higher (p<0.05) dry matter and crude protein digestibility (%) were observed in $T_2$ and $T_3$ than in $T_1$. The mean balances for different elements were Ca, 1.14, 1.68 and 1.67 g; P, 1.70, 1.95 and 2.18 g; S, 0.54, 0.92 and 1.11 g; Zn, 22.56, 25.30 and 28.71 mg; Cu, 7.94, 5.71 and 5.53 mg; Fe, 33.19, 32.94 and 31.03 mg and Mn, 8.24, 14.40 and 16.07 mg/lamb/day. The retention of supplemental minerals increased (p<0.01) while that of Cu decreased (p<0.01) due to supplementation of minerals (Ca, P, S, Zn and Mn). Retention as per cent of intake increased statistically for S and Mn while that of Cu decreased. It can be concluded that supplementation of minerals (Ca, P, S, Zn and Mn) higher than the recommended level improved body weight gain and feed to gain ratio. The retention of minerals increased due to supplementation. Therefore, an additional supplementation of deficient minerals (Ca, P, S, Zn and Mn) by 10% was beneficial for Hisardale male lambs under tropical condition in India.

Zinc Status Assessment by Analysis of Mononuclear Cell Metallothionein mRNA Using Competitive-Reverse Transcriptase-Polymerase Chain Reaction

  • Lee, Soo-Lim;Yoon, Jin-Sook;Kwon, Chong-Suk;Beattie, John H.;Kwun, In-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.3
    • /
    • pp.276-282
    • /
    • 2004
  • Marginal Zn deficiency is prevalent through the world and yet human zinc status has not been properly assessed due to the lack of a reliable diagnostic indicator. One potential possibility for zinc status assessment using Zn-binding protein, metallothionein (MT)-mRNA, has been proposed. The purpose of the present study was aimed to show whether measurement of mononuclear cell (MNC) MT mRNA, using a competitive-reverse transcriptase-polymerase chain reaction (competitive-RT-PCR) assay, could indicate zinc status in human subjects. In this study, MNC MT-mRNA expression was measured using a competitive-RT-PCR to compare before and after 14 days of zinc supplementation (50 mg Zn/das zinc gluconate). RT-PCR oligonucleotide primers which were designed to amplify both a 278 bp segment of the human MT-2A cDNA and a 198 bp mutant competitor cDNA template from MNCs, were prepared. MT-2A mRNA was normalized by reference to the housekeeping gene, $\beta$-actin, mRNA for which was also measured by competitive-RT-PCR. There was considerable inter-individual variation in MT-mRNA concentration and yet, the mean MT-2A mRNA level increased 4.7-fold after Zn supplementation, as compared to before Zn supplementation. This MT-2A mRNA level was shown as the same pattern and, even more sensitive assay, compared to the conventional plasma and red blood cells (RBCs) Zn assessment in which plasma and RBCs zinc levels increased 2.3- and 1.2-fold, respectively (p<0.05). We suggest that MT competitive-RT-PCR can be a useful assessment tool for evaluating human zinc status.

Immunological Responses of Broiler Chicks Can Be Modulated by Dietary Supplementation of Zinc-methionine in Place of Inorganic Zinc Sources

  • Moghaddam, Hasan Nassiri;Jahanian, Rahman
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.3
    • /
    • pp.396-403
    • /
    • 2009
  • Male broiler chicks were fed graded levels of organic zinc (zinc-methionine) supplementation to investigate the effects of partial or complete substitution of the organic zinc source for inorganic ones on the development of lymphoid organs and immunological responses. A total of 450 day-old male broilers were distributed into groups of 10 chicks and randomly assigned to nine experimental diets during a 42-day feeding trial. Dietary treatments consisted of two basal diets supplemented with 40 mg/kg added zinc as feed-grade Zn sulfate or Zn oxide in which, Zn was replaced with that provided from zinc-methionine (ZnMet) complex at the levels of 25, 50, 75 or 100%. Two randomly-selected birds from each pen replicate were bled and then slaughtered by cervical cutting on the final day of the trial to measure leukocyte subpopulations and relative weights of lymphoid organs. Among lymphoid organs, only thymus weight was affected (p<0.05) by dietary treatments. The sulfate-supplemented birds were heavier (p<0.01) in relative weight of thymus than oxide-supplemented birds. The 10 days of age-assessed cutaneous hypersensivity reaction was stronger in chicks fed ZnMet-containing diets. Dietary ZnMet supplementation caused (p<0.05) an increase in proportion of lymphocytes and consequently a decrease in heterophil to lymphocyte ratio. Diet fortification by zinc-methionine complex increased (p<0.01) Newcastle antibody titer at 19 days of age. Also, a similar response was observed in antibody titers at 6 and 12 d after infectious bronchitis vaccine administration. There was no significant effect of replacement of dietary zinc on antibody titer against infectious bursal disease virus (IBDV) at the 6th d post-vaccine inoculation; however, at d 12 after vaccination, ZnMet-fortified diets improved antibody titer against IBDV. Although dietary inclusion of ZnMet had no marked effect on primary antibody titer against sheep erythrocytes, effective responses were observed during secondary reaction from the viewpoint of both total antibody and immunoglobulin Y (IgY) titers. From the present findings, it can be concluded that dietary supplementation with organic zinc improves both cellular and humoral immune responses. It is necessary to replace 75% of supplemental inorganic zinc with organic ZnMet complex to achieve the optimum immunological responses in broiler chicks.

The Supplementation of Yam Powder Products Can Give the Nutritional Benefits of the Antioxidant Mineral (Cu, Zn, Mn, Fe and Se) Intakes

  • Shin, Mee-Young;Cho, Young-Eun;Park, Chana;Sohn, Ho-Yong;Lim, Jae-Hwan;Kwun, In-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.17 no.4
    • /
    • pp.299-305
    • /
    • 2012
  • Yam has been recognized having the beneficial effects for the prevention of various diseases, such as cancer, immunity, infection and obesity etc. There is increasing consideration to supplement the antioxidant nutrients to make up the lack of the antioxidant nutrient intakes. No study has been reported for the analysis of antioxidant mineral contents and comparison to dietary recommended intake for the sense of health promotion. In our study, we analyzed the contents of antioxidant trace elements (Zn, Mn, Fe, Cu and Se) and Cr contents in cultivated Korean yam powders for evaluation of nutrient intake aspects. We collected the commercial yam powders from six different cultivated areas in the South Korea and measured antioxidant minerals (Zn, Mn, Fe, Cu and Se) and Cr contents using trace element-free plasma spectrometer (ICP) or atomic absorption spectrometer (AAS) after dry-ashing and then wet-acid digestion. The accuracy of mineral analysis method was confirmed by the mineral analysis of standard reference material. Each analyzed element contents in yam were compared to dietary reference intakes of Koreans (KDRIs). The average levels of trace elements (Zn, Mn, Fe, Cu, Se and Cr) in yam powders were 18.3, 11.9, 36.0, 3.7, 1.9 and 1.27 ${\mu}g/g$ yam powder, respectively. The intakes of Zn, Fe, Cu and Se of which KDRIs is determined, are accounted as being up to 23.8%, 55.6%, 32.5% and 236% recommended intake (RI) of KDRIs, if daily yam supplementation (50 g) of commercial instruction would be considered. The intake of Mn is about 25% adequate intake (AI) of KDRIs with the daily supplementation of yam powder. Most of mineral intakes from daily yam supplementation were with the range of non-detectable to <10% upper limit (UL) level, which is very much safe. The study results show that daily supplementation of Korean yam power is beneficial to provide the supplemental nutrient intake and also is safe, if the suggested dosage would be considered.

Dietary zinc supplementation in high-fat diet-induced obese mice: Effects on the skeletal muscle ZIP7 expression and blood glucose regulation (고지방식이 유도 비만 마우스에서 아연 보충이 골격 근육의 아연 수송체 ZIP7 수준과 혈당 조절에 미치는 영향)

  • Zhu, Qianjing;Chung, Jayong
    • Journal of Nutrition and Health
    • /
    • v.54 no.6
    • /
    • pp.594-602
    • /
    • 2021
  • Purpose: The zinc transporter ZIP7 is known to regulate glucose metabolism in skeletal muscles, and skeletal muscles are known to play a critical role in glycemic control. The present study examines the effects of dietary zinc supplementation on the blood glucose concentration and expression of ZIP7 in skeletal muscle obtained from obese mice fed a high-fat diet (HF). Methods: C57BL/6J male mice were divided into three groups and were administered either a HF (60% of total calories from fat), HF supplemented with zinc (HF+Zn, 60% calories from fat + 300 mg zinc/kg diet), or low-fat diet (CON, 10% calories from fat), for 15 weeks. Results: Compared to CON group mice, the final body weights and adipose tissue weights were significantly increased, while the skeletal muscle weights were significantly decreased in mice belonging to the HF and HF+Zn groups. The HF+Zn group had significantly lower levels of fasting blood glucose concentrations than the HF group. Similarly, zinc supplementation significantly decreased the HF-elevated area under the curve values obtained from the oral glucose tolerance test. Skeletal muscle protein levels of ZIP7 in samples obtained from the HF group were significantly decreased as compared to the CON group. Conversely, the skeletal ZIP7 protein levels in the HF+Zn group were significantly increased as compared to the HF group. Moreover, the protein levels of phosphorylated-AKT and glucose transporter 4 in the skeletal muscle were significantly increased subsequent to zinc supplementation. Conclusion: Our data demonstrates that zinc supplementation up-regulates the skeletal muscle ZIP7 expression, which is associated with improved glucose tolerance in the obesity.

Evaluation of the Efficacy of Crude Phytase Prerarations in Broiler Chickens

  • Paik, I.K.;Um, J.S.;Lee, S.J.;Lee, J.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.5
    • /
    • pp.673-680
    • /
    • 2000
  • An experiment was conducted with day-old 300 commercial male broiler chicks (Arbor Acres$^{(R)}$) to evaluate the efficacy of crude phytase preparerations produced from a culture of Aspergillus ficcum. The experiment consisted of five dietary treatments; T1, com-soy control diet with 0.45% non-phytate phosphorus (NPP) for starter period and 0.35% NPP for grower period; T2, control - 0.1% NPP; T3, control 0.2% NPP; T4, T3+600 U of crude phytase (broth+cell); and T5, T3+600 U of crude phytase (broth). The body weight gain, feed intake, and feed/gain of chickens fed T1 diet was highest (p<0.01) among treatments. BW gain and feed intake of T4 and T5 were greater than those of T3 but were less than those of T1 and T2. T3 was highest in mortality among treatments. Decreasing the NPP level lowered availability of DM, crude ash, ether extract, crude fiber, Zn, and Fe but supplementation of crude phytase preparations improved the availability of these nutrients as well as those of Ca, P and Cu. Excretion of P and Cu significantly decreased as the NPP level in the diet decreased. Further reduction of P and Cu excretion and reduction of Ca, Mg and Fe excretion were achieved by supplementation of crude phytase preparations. The serum concentrations of Ca, P, Mg, Zn, Fe, and Cu were significantly increased by crude phytase supplementation. The weight and length of tibia, and contents of crude ash, Ca, P, Mg, and Zn were adversely affected by lowering NPP level but partially recovered by supplementation of crude phytase preparations. In conclusion, lowering NPP level in the broiler diet significantly depressed the performance. Supplementation of crude phytase preparations produced from Aspergillus ficuum could partially recover the depression.

Effects of Varying Dietary Zinc Levels and Environmental Temperatures on the Growth Performance, Feathering Score and Feather Mineral Concentrations of Broiler Chicks

  • Lai, P.W.;Liang, Juan-Boo;Hsia, L.C.;Loh, T.C.;Ho, Y.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.7
    • /
    • pp.937-945
    • /
    • 2010
  • This study aimed to investigate the effects of dietary zinc (Zn), environmental temperatures and Zn${\times}$temperature interaction on growth, feathering score and mineral composition of broilers. A total of 256 d-old Avian male broiler chicks were randomly allocated to a $4{\times}2$ factorial arrangement with four corn-soybean meal basal diets (containing 44 mg Zn/kg) supplemented with 0, 40, 60 mg/kg Zn (Diets 1, 2 and 3, respectively; 0.8% Ca for these three diets) and non-Zn supplementation, 1.6% Ca (Diet 4) and two temperature conditions (low: 26, 24, $22^{\circ}C$ vs. high: 30, 28, $26^{\circ}C$). All birds were given feathering coverage scores for back, breast, wing, under-wing and tail. The wing and tail were further evaluated for the occurrence and severity of defect feathers. Feathers were then pooled for mineral composition analysis. The results showed that in high temperature conditions, broilers fed Zn-unsupplemented, 0.8% Ca ration (Diet 1) had significantly (p<0.05) lower ADFI and ADG (wk 1-6) than birds under low temperature conditions. However, when the birds were fed 40 and 60 mg/kg Zn supplementation (Diets 2 and 3), the ADFI and ADG in both temperature conditions were not significantly different. In low temperature conditions, the ADFI, ADG (p<0.05), all feather coverage (p<0.01) and tail defect scores (p<0.001) of birds fed Diet 4 (excess Ca) were significantly poorer than those fed Diet 1. More Ca (p<0.05) was retained in the feathers of broilers fed Diet 4 under high temperature conditions. Broilers fed the Zn-unsupplemented ration (Diet 1) had significantly higher feather phosphorus (p<0.01) and potassium (p<0.05) concentrations than those fed the 60 mg/kg Zn-supplemented ration (Diet 3). A reduction of feather phosphorus (p<0.01) and potassium (p<0.05) and higher manganese (p<0.05) concentrations were observed in Diet 4 broilers as compared to those fed Diet 1. Under high temperature conditions, broilers had lower iron (p<0.05) and higher manganese (p<0.05) concentrations in feathers. Broilers kept in high temperature conditions had a higher Zn requirement and 40 mg/kg Zn supplementation was sufficient for the birds to achieve optimum growth. Supplemental Zn ameliorated the adverse effect of high temperature on growth and occurrence of tail feather defects. Excess Ca disrupted Zn metabolism to exert a detrimental effect on growth performance and normal feathering and this was elucidated in the birds kept in low temperature conditions.

Glycemic control of type 2 diabetic patients after short-term zinc supplementation

  • Oh, Hyun-Mee;Yoon, Jin-Sook
    • Nutrition Research and Practice
    • /
    • v.2 no.4
    • /
    • pp.283-288
    • /
    • 2008
  • This study was carried out to determine whether a short-tenn zinc supplementation contributes to beneficial changes in glycemic control among type 2 diabetic patients. Seventy-six diabetic subjects and 72 normal adults participated in this study. Subjects were divided into supplemented and control groups. Forty-four diabetic patients and 34 normal subjects were supplemented with 50 mg zinc daily as zinc gluconate for 4 weeks. Zinc status was assessed from fasting plasma levels and urinary excretion. The effects of zinc supplementation on fasting blood glucose, $HbA_{1c}$, insulin, and C-peptide were measured at the beginning of the study and after 4 weeks of supplementation. The changes in glycemic control indicators were compared between diabetic groups, classified by baseline $HbA_{1c}$ levels, and by diabetic duration. At baseline, the incidence of marginal zinc deficiency in the diabetic group, as determined by plasma zinc level, was approximately twice as high as in the normal adult group. The changes of $HbA_{1c}$ concentration, and fasting blood glucose following supplementation were not statistically significant in diabetic subjects. In normal subjects, a significant decrease of $HbA_{1c}$ occurred only in the zinc supplemented group. No significant changes were observed for serum insulin and C-peptide in diabetic as well as normal subjects. However, when the changes were compared by baseline $HbA_{1c}$ level, we found that diabetic subjects with $HbA_{1c}\;{\geq}\;7.5%$ showed significantly improved levels of $HbA_{1c}$ and fasting glucose after Zn supplementation. While such improvement in fasting blood glucose was significant among diabetics with shorter diabetic duration, significant levels of increase in serum insulin and C-peptide were observed in zinc supplemented subjects with longer diabetic duration. Fasting blood glucose was significantly decreased, whereas serum insulin and C-peptide were increased in diabetics with marginal zinc status. Therefore, we suggest that Zn supplementation for a short-term period may improve glycemic control in diabetic patients with higher $HbA_{1c}$ levels and marginal zinc status.

Effects of Trace Mineral Supplementation and Source, 30 Days Post-weaning and 28 Days Post Receiving, on Performance and Health of Feeder Cattle

  • Dorton, K.L.;Engle, T.E.;Enns, R.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.10
    • /
    • pp.1450-1454
    • /
    • 2006
  • Three hundred and seventy-five steers (approximately 7 mo of age and $239.0{\pm}10.4kg$) were utilized to determine the effects of trace mineral (TM) supplementation and source on performance during the on-farm backgrounding and feedlot receiving phases of beef cattle production. At their respective ranches, steers were stratified by body weight into six groups. Groups were then assigned to one of six pens and pens were randomly assigned to treatments. Treatments consisted of: 1) control (no supplemental Cu, Zn, Mn, and Co), 2) inorganic trace mineral ($CuSO_4$, $ZnSO_4$, $MnSO_4$, and $CoCO_3$), and 3) organic trace mineral (iso-amounts of organic Cu, Zn, Mn, and Co). Mineral treatments were fed in alfalfa pellets formulated to supply 360 mg of Zn, 200 mg of Mn, 125 mg of Cu, and 12.5 mg of Co per head per day from either organic or inorganic trace mineral sources. Control steers received alfalfa pellets with no additional Cu, Zn, Mn, or Co. Steers were allowed free access to harvested alfalfa-grass hay throughout the 30-d on-farm backgrounding phase. On day 30 post-weaning, steers were weighed and transported to the feedlot. Steers were blocked by treatment within ranch, stratified by initial body weight, and randomly assigned to one of 36 pens (9-12 head per pen; 12 pens per treatment). Steers remained on the same on-farm backgrounding trace mineral treatments, however, trace mineral treatments were included in the total mixed growing ration. Steers were fed a corn silage-based growing diet throughout the 28 d feedlot receiving period. There was no effect of TM supplementation on performance of steers during the on-farm backgrounding phase. By the end of the 28-d feedlot receiving phase, ADG was similar between control and trace mineral supplemented steers. Steers supplemented with organic TM had greater (p<0.05) ADG than steers supplemented with inorganic TM by the end of the 28-d feedlot receiving phase. Morbidity and mortality rates were similar across treatments.