• Title/Summary/Keyword: Zn doping

Search Result 366, Processing Time 0.037 seconds

Annealing Effect of Phosphorus-Doped ZnO Nanorods Synthesized by Hydrothermal Method (Phosphorus-Doped ZnO 나노로드의 열처리 효과)

  • Hwang, Sung-Hwan;Moon, Kyeong-Ju;Lee, Tae Il;Myoung, Jae Min
    • Korean Journal of Materials Research
    • /
    • v.23 no.5
    • /
    • pp.255-259
    • /
    • 2013
  • An effect of thermal annealing on activating phosphorus (P) atoms in ZnO nanorods (NR) grown using a hydrothermal process was investigated. $NH_4H_2PO_4$ used as a dopant source reacted with $Zn^{2+}$ ions and $Zn_3(PO_4)_2$ sediment was produced in the solution. The fact that most of the input P elements are concentrated in the $Zn_3(PO_4)_2$ sediment was confirmed using an energy dispersive spectrometer (EDS). After the hydrothermal process, ZnO NRs were synthesized and their PL peaks were exhibited at 405 and 500 nm because P atoms diffused to the ZnO crystal from the $Zn_3(PO_4)_2$ particles. The solubility of the $Zn_3(PO_4)_2$ initially formed sediment varied with the concentration of $NH_4OH$. Before annealing, both the structural and the optical properties of the P-doped ZnO NR were changed by the variation of P doping concentration, which affected the ZnO lattice parameters. At low doping concentration of phosphorus in ZnO crystal, it was determined that a phosphorus atom substituted for a Zn site and interacted with two $V_{Zn}$, resulting in a $P_{Zn}-2V_{Zn}$ complex, which is responsible for p-type conduction. After annealing, a shift of the PL peak was found to have occurred due to the unstable P doping state at high concentration of P, whereas at low concentration there was little shift of PL peak due to the stable P doping state.

Preparation and Photoluminescence of Mn-Doped $ZnGa_2O_4$ Phosphors (Mn 도핑한 $ZnGa_2O_4$ 형광체의 제조 및 빛발광 특성)

  • 류호진;박희동
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.5
    • /
    • pp.531-535
    • /
    • 1996
  • ZnGa2O4 and Mn-doped ZnGa2O4 were synthesized using the state reaction method to investigate their photoluminescence characteristics depending on Mn concentration. Under 254nm excitation, ZnGa2O4 exhibited a broad-band emission extending from 330 nm to 610 nm peaking at 450nm. On the other hand Mn-doped ZnGa2O4 showed a new strong narrow-band emission peaking at 504 nm and maximum intensity at the doping concentration of 0.006 mole Mn.

  • PDF

Effects of 4MP Doping on the Performance and Environmental Stability of ALD Grown ZnO Thin Film Transistor

  • Kalode, Pranav Y.;Sung, M.M.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.471-471
    • /
    • 2013
  • Highly stable and high performance amorphous oxide semiconductor thin film transistors (TFTs) were fabricated using 4-mercaptophenol (4MP) doped ZnO by atomic layer deposition (ALD). The 4 MP concentration in ZnO films were varied from 1.7% to 5.6% by controlling Zn: 4MP pulses. The carrier concentrations in ZnO thin films were controlled from $1.017{\times}10^{20}$/$cm^3$ to $2,903{\times}10^{14}$/$cm^3$ with appropriate amount of 4MP doping. The 4.8% 4MP doped ZnO TFT revealed good device mobility performance of $8.4cm^2V-1s-1$ and on/off current ratio of $10^6$. Such 4MP doped ZnO TFTs were stable under ambient conditions for 12 months without any apparent degradation in their electrical properties. Our result suggests that 4 MP doping can be useful technique to produce more reliable oxide semiconductor TFT.

  • PDF

Modulation of Microstructure and Energy Storage Performance in (K,Na)NbO3-Bi(Ni,Ta)O3 Ceramics through Zn Doping (Zn 도핑을 통한 (K,Na)NbO3-Bi(Ni,Ta)O3 세라믹의 미세구조 및 에너지 저장 물성 제어)

  • Jueun Kim;Seonhwa Park;Yuho Min
    • Journal of Powder Materials
    • /
    • v.30 no.6
    • /
    • pp.509-515
    • /
    • 2023
  • Lead-free perovskite ceramics, which have excellent energy storage capabilities, are attracting attention owing to their high power density and rapid charge-discharge speed. Given that the energy-storage properties of perovskite ceramic capacitors are significantly improved by doping with various elements, modifying their chemical compositions is a fundamental strategy. This study investigated the effect of Zn doping on the microstructure and energy storage performance of potassium sodium niobate (KNN)-based ceramics. Two types of powders and their corresponding ceramics with compositions of (1-x)(K,Na)NbO3-xBi(Ni2/3Ta1/3)O3 (KNN-BNT) and (1-x)(K,Na)NbO3-xBi(Ni1/3Zn1/3Ta1/3)O3 (KNN-BNZT) were prepared via solid-state reactions. The results indicate that Zn doping retards grain growth, resulting in smaller grain sizes in Zn-doped KNN-BNZT than in KNN-BNT ceramics. Moreover, the Zn-doped KNN-BNZT ceramics exhibited superior energy storage density and efficiency across all x values. Notably, 0.9KNN-0.1BNZT ceramics demonstrate an energy storage density and efficiency of 0.24 J/cm3 and 96%, respectively. These ceramics also exhibited excellent temperature and frequency stability. This study provides valuable insights into the design of KNN-based ceramic capacitors with enhanced energy storage capabilities through doping strategies.

Zn and Ni Doping Effects on Antiferromagneticv Spin Fluctuation in YBa$_2Cu_3O_7$ (Zn와 Ni의 치환이 YBa$_2Cu_3O_7$의 반강자성적 스핀요동에 주는 효과)

  • Han, Ki-Seong;Mean, Byeong-Jin;Lee, Kyu-Hong;Seo, Seung-Won;Kim, Do-Hyeong;Lee, Moo-Hee;Lee, Won-Chun;Cho, Jeong-Suk
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.247-250
    • /
    • 1999
  • We have performed $^{63,65}$Cu nuclear quadrupole resonance (NQR) measurements on Zn and Ni doped YBa$_2Cu_3O_7$ (YBa$_2Cu_{3-x}M_xO_7$, M=Zn or Ni, x = 0.00 ${\sim}$ 0.09). Doping effects are markedly different in relaxation rates as well as in superconducting transition temperatures. Both the spin-lattice and the spin-spin relaxation rates decrease for Zn doped YBCO. However, those increase for Ni doped YBCO. This contrast in local electronic dynamics provides a clear microscopic evidence that Zn forms no local moment, while Ni develops a local moment. Consequently, the antiferromagnetic spin fluctuation is suppressed by Zn doping whereas it is preserved by Ni doping.

  • PDF

Properties of Aluminum Doped Zinc Oxide Thin Film Prepared by Sol-gel Process

  • Yi, Sung-Hak;Kim, Jin-Yeol;Jung, Woo-Gwang
    • Korean Journal of Materials Research
    • /
    • v.20 no.7
    • /
    • pp.351-355
    • /
    • 2010
  • Transparent conducting aluminum-doped ZnO thin films were deposited using a sol-gel process. In this study, the important deposition parameters were investigated thoroughly to determine the appropriate procedures to grow large area thin films with low resistivity and high transparency at low cost for device applications. The doping concentration of aluminum was adjusted in a range from 1 to 4 mol% by controlling the precursor concentration. The annealing temperatures for the pre-heat treatment and post-heat treatment was $250^{\circ}C$ and 400-$600^{\circ}C$, respectively. The SEM images show that Al doped and undoped ZnO films were quite uniform and compact. The XRD pattern shows that the Al doped ZnO film has poorer crystallinity than the undoped films. The crystal quality of Al doped ZnO films was improved with an increase of the annealing temperature to $600^{\circ}C$. Although the structure of the aluminum doped ZnO films did not have a preferred orientation along the (002) plane, these films had high transmittance (> 87%) in the visible region. The absorption edge was observed at approximately 370 nm, and the absorption wavelength showed a blue-shift with increasing doping concentration. The ZnO films annealed at $500^{\circ}C$ showed the lowest resistivity at 1 mol% Al doping.

Electrical and optical properties of Fluorine and Hydrogen co-doping ZnO (Fluorine과 Hydrogen을 co-doping한 ZnO 박막의 전기적 및 광학적 특성)

  • Lee, Seung-Hun;Tark, Sung-Ju;Kang, Min-Gu;Park, Sung-Eun;Kim, Won-Mok;Kim, Dong-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.359-359
    • /
    • 2009
  • 투명전도 산화막 재료로 널리 사용되고 있는 ITO는 전기적 및 광학적 특성이 우수한 장점이 있으나, ITO의 주 재료인 인듐은 매장량이 적어서 가격이 고가인 단점이 있어 대체 재료의 개발이 시급한 상황이다. ITO 대체 TCO로 가장 유력한 후보인 Al doped ZnO(AZO)는 가시광을 투과하는 성질을 가지고 있고, 저온 공정이 가능하다는 장점뿐만 아니라 수소 분위기의 안정성 및 가격이 싸다는 장점이 있다. 본 연구에서는 양이온 금속원소(Al)과 음이온 할로겐 원소(F) 및 수소(H)를 co-doping한 ZnO 박막을 rf 마그네트론 스퍼터를 이용하여 증착한 뒤 도핑량과 진공중에서의 열처리에 따른 전기적 및 광학적 특성에 대해 고찰하였다. Al과 H를 co-doping한 ZnO의 박막의 경우 Al의 농도가 낮은 TCO박막이 전기적 특서에서 더 큰 향상을 보였으며, 동일한 F 함량에서는 H 함량이 늘어날수록 캐리어의 증가해 TCO박막의 전기적 특성이 향상되는 것으로 나타났다. 그러나 진공중의 열처리에 따른 F와 H의 거동은 반대로 나타났다. 이 연구를 통해서 $36.2cm^2$/Vs의 높은 홀 이동도와 $2.9{\times}10^{-4}{\Omega}cm$의 낮은 비저항을 가지는 ZnO계 박막의 제조가 가능하였다.

  • PDF

Controllability of Structural, Optical and Electrical Properties of Ga doped ZnO Nanowires Synthesized by Physical Vapor Deposition

  • Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.3
    • /
    • pp.148-151
    • /
    • 2013
  • The control of Ga doping in ZnO nanowires (NWs) by physical vapor deposition has been implemented and characterized. Various Ga-doped ZnO NWs were grown using the vapor-liquid-solid (VLS) method, with Au catalyst on c-plane sapphire substrate by hot-walled pulsed laser deposition (HW-PLD), one of the physical vapor deposition methods. The structural, optical and electrical properties of Ga-doped ZnO NWs have been systematically analyzed, by changing Ga concentration in ZnO NWs. We observed stacking faults and different crystalline directions caused by increasing Ga concentration in ZnO NWs, using SEM and HR-TEM. A $D^0X$ peak in the PL spectra of Ga doped ZnO NWs that is sharper than that of pure ZnO NWs has been clearly observed, which indicated the substitution of Ga for Zn. The electrical properties of controlled Ga-doped ZnO NWs have been measured, and show that the conductance of ZnO NWs increased up to 3 wt% Ga doping. However, the conductance of 5 wt% Ga doped ZnO NWs decreased, because the mean free path was decreased, according to the increase of carrier concentration. This control of the structural, optical and electrical properties of ZnO NWs by doping, could provide the possibility of the fabrication of various nanowire based electronic devices, such as nano-FETs, nano-inverters, nano-logic circuits and customized nano-sensors.

Doping Effect of Yb2O3 on Varistor Properties of ZnO-V2O5-MnO2-Nb2O5 Ceramic Semiconductors

  • Nahm, Choon-Woo
    • Korean Journal of Materials Research
    • /
    • v.29 no.10
    • /
    • pp.586-591
    • /
    • 2019
  • This study describes the doping effect of $Yb_2O_3$ on microstructure, electrical and dielectric properties of $ZnO-V_2O_5-MnO_2-Nb_2O_5$ (ZVMN) ceramic semiconductors sintered at a temperature as low as $900^{\circ}C$. As the doping content of $Yb_2O_3$ increases, the ceramic density slightly increases from 5.50 to $5.54g/cm^3$; also, the average ZnO grain size is in the range of $5.3-5.6{\mu}m$. The switching voltage increases from 4,874 to 5,494 V/cm when the doping content of $Yb_2O_3$ is less than 0.1 mol%, whereas further doping decreases this value. The ZVMN ceramic semiconductors doped with 0.1 mol% $Yb_2O_3$ reveal an excellent nonohmic coefficient as high as 70. The donor density of ZnO gain increases in the range of $2.46-7.41{\times}10^{17}cm^{-3}$ with increasing doping content of $Yb_2O_3$ and the potential barrier height and surface state density at the grain boundaries exhibits a maximum value (1.25 eV) at 0.1 mol%. The dielectric constant (at 1 kHz) decreases from 592.7 to 501.4 until the doping content of $Yb_2O_3$ reaches 0.1 mol%, whereas further doping increases it. The value of $tan{\delta}$ increases from 0.209 to 0.268 with the doping content of $Yb_2O_3$.

Doping Control in ZnO Nanowires Employing Hot-Walled Pulsed Laser Deposition (Hot-Walled PLD를 이용한 ZnO 나노와이어의 도핑 제어)

  • Kim, Kyung-Won;Lee, Se-Han;Song, Yong-Won;Kim, Sang-Sig;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.5-5
    • /
    • 2008
  • We design and demonstrate the controled doping into ZnO nanowires (NWs) adopting self-contrived hot-walled pulsed laser deposition (HW-PLD). Optimized synthesis conditions with the diversified dopants guarantee the excellent crystalinity and morphology as well as electrical properties of the NWs. Proprietary target rotating system in the HW-PLD fuels the controlled formation and doping of the NWs. Prepared NWs sensitive to the environment are systematically characterized, and the doping mechanism is discussed.

  • PDF