• Title/Summary/Keyword: Zn Sacrificial Anode

Search Result 23, Processing Time 0.023 seconds

CORROSION BEHAVIOR OF Al-Zn ALLOY AS A SACRIFICIAL ANODE OF ORV TUBES

  • Jin, Huh;Lee, Ho-Kyun;Lee, Jae-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.452-455
    • /
    • 1999
  • ORV which vaporizes LNG to NG is consisted of tube and header whose substrate is aluminum alloy. The corrosion of the tube is very severe because of sea water being used as the heating source. In this research to protect ORV substrate material, the corrosion behavior of aluminum alloys was investigated for the sacrificial role of Al-Zn alloy for ORV tubes. The electrochemical behavior of aluminum alloys in sea water was investigated. The corrosion behavior of thermally-sprayed and cladded samples were compared through salt spray tests. Al-Zn alloy can act as a sacrificial anode and cladded Al-Zn alloy has a better corrosion resistance than that of thermally sprayed one. The galvanic effect of Al-Zn to substrate material was conformed from scratched sample tests.

  • PDF

Electrochemical Characteristics of Zn-mesh Cathodic Protection Systems in Concrete in Natural Seawater at Elevated Temperature

  • Kim, Ki-Joon;Jung, Jin-A;Lee, Woo-Cheol;Jang, Tae-Seub
    • Corrosion Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.269-274
    • /
    • 2007
  • The corrosion of steel in concrete is significant in marine environment. Salt damage is one of the most detrimental causes to concrete bridges and port structures. Especially, the splash and tidal zones around water line are comparatively important in terms of safety and life-time point of view. During the last several decades, cathodic protection (cp) has been commonly accepted as an effective technique for corrosion control in concrete structures. Zn-mesh sacrificial anode has been recently developed and started to apply to the bridge column cp in marine condition. The detailed parameters regarding Zn-mesh cp technique, however, have not well understood so far. This study is to investigate how much Zn-mesh cp influences along the concrete column at elevated temperature. About 100 cm column specimens with eight of 10 cm segment rebars have been used to measure the variation of cp potential with the distance from Zn-mesh anode at both $10^{\circ}C$ and $40^{\circ}C$ in natural seawater. The cp potential change and current diminishment along the column specimens have been discussed for the optimum design of cp by Zn-mesh sacrificial anode.

Effect of Zinc Addition in Filler Metal on Sacrificial Anode Cathodic Protection of Fin-Tube Aluminum Heat Exchanger

  • Yoon-Sik So;Eun-Ha Park;Jung-Gu Kim
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.349-360
    • /
    • 2023
  • This study investigated the tri-metallic galvanic coupling of different metals in the tubes, fillers, and fins of a heat exchanger. The goal was to prevent corrosion of the tubes using the fin as a sacrificial anode while ensuring that the filler metal has a more noble potential than the fin, to avoid detachment. The metals were arranged in descending order of corrosion potential, with the noblest potential assigned to the tube, followed by the filler metal and the fin. To address a reduction in protection current of the fin, the filler metal was modified by adding Zn to decrease its corrosion potential. However, increasing the Zn content of filler metal also increases its corrosion current. The study examined three different filler metals, considering their corrosion potential, and kinetics. The results suggest that a filler metal with 1.5 wt.% Zn addition is optimal for providing cathodic protection to the tube while reducing the reaction rate of the sacrificial anode.

Cathodic Protection Characteristics and Effective Length of Protection Current of Concrete Pile using Zn-mesh Sacrificial Anode (아연 메쉬 희생양극을 이용한 콘크리트 파일의 음극방식 특성 및 방식전류 유효거리)

  • Kim, Ki-Joon;Jeong, Jin-A;Lee, Woo-Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.773-776
    • /
    • 2008
  • The corrosion of steel in concrete is significant in marine environment. Marine bridges are readily deteriorated due to the exposure to marine environment. Salt damage is one of the most detrimental causes to concrete bridges and port structures. Especially, the splash and tidal zones around water line are comparatively important in terms of safety and life-time point of view. During the last several decades, cathodic protection (cp) has been commonly accepted as an effective technique for corrosion control in concrete structures. Zn-mesh sacrificial anode has been recently developed and started to apply to the bridge column cp in marine condition. The detailed parameters regarding Zn-mesh cp technique, however, have not well understood. This study is to investigate how much Zn-mesh cp influences along the concrete column at elevated temperature. About 100cm column specimens with eight of 10cm segment rebars have been used to measure the variation of cp potential with the distance from Zn-mesh anode at both 10$^{\circ}$C and 40$^{\circ}$C in natural seawater. The cp potential change and current diminishment along the column specimens have been discussed for the optimum design of cp by Zn-mesh sacrificial anode

  • PDF

Effect of Additional Elements on Efficiency of Al and Zn Sacrificial Anode for Naval Vessels (함정용 Al 및 Zn 희생양극의 효율에 미치는 첨가원소 영향)

  • Choi, Woo-Suk;Park, Kyung-Chul;Kim, Byeong-Ho
    • Journal of Navigation and Port Research
    • /
    • v.39 no.4
    • /
    • pp.277-283
    • /
    • 2015
  • MS(Mild Steel), HTS(High Tensile Steel), HYS(High Yield Steel), AL(Aluminum Alloy) and Composite Materials are used for vessels. Steel Materials are mostly used for vessels because body of a ship have to perform the basic functions such as watertight, preserving the strength and supporting the equipments. The vessels primarily carry out a mission at ocean, so that body of a ship is necessarily rusted. There are several methods to protect the corrosion of vessels such as painting, SACP(sacrificial anode cathodic protection) and ICCP(impressed current cathodic protection). For the sacrificial anode cathodic protection, Al and Zn alloys are normally used. Heavy metals are added to the Al and Zn Alloys for improving the corrosion properties but they are so harmful to the human and environment. Therefore, the use of these heavy metals is strictly regulated in the world. In this paper, Al and Zn Alloys are made by adding the trace elements(Ma, Ca, Ce and Sn) which is not harmful to the human and environment. SEM, XRD, Potentiodynamic Polarization test and Current Efficiency test are conducted for evaluation of Al and Zn Alloys. As a result of the experiment, Al-3Zn-0.6Sn and Zn-3Sn Alloys are more efficient than other Alloys.

Corrosion mitigation of photovoltaic ribbon using a sacrificial anode (희생양극을 이용한 태양광 리본의 부식 저감)

  • Oh, Wonwook;Chan, Sung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.681-686
    • /
    • 2017
  • Degradation is commonly observed in field-aged PV modules due to corrosion of the photovoltaic ribbon. The reduced performance is caused by a loss of fill factor due to the high series resistance in the PV ribbon. This study aimed to mitigate the degradation by corrosion using five sacrificial anodes - Al, Zn and their alloys - to identify the most effective material to mitigate the corrosion of the PV ribbon. The corrosion behavior of the five sacrificial anode materials were examined by open circuit potential measurements, potentiodynamic polarization tests, and galvanic current density and potential measurements using a zero resistance ammeter. Immersion tests for 120 hours were also conducted using materials and damp heat test tests were performed for 1500 hours using 4 cell mini modules. The Al-3Mg and Al-3Zn-1Mg sacrificial anodes had a low corrosion rate and reduced drop in power, making then suitable for long-term use.

Electrochemical Evaluation of Corrosion Properties of Aluminum Alloy as a Sacrificial Anode for Offshore Structure Protection (해양구조물의 방식을 위한 알루미늄 합금의 희생양극적 부식 특성의 전기화학적 평가)

  • Rhee, Jin-Ho;Lee, Jae-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.2
    • /
    • pp.68-72
    • /
    • 2015
  • The corrosion behavior of metals and alloys for the safety of offshore structures in seawater was investigated for the application of sacrificial anodes. The experiments were focused on the polarization behaviors and the surface morphology of each metal after experiments. Pure Zn, pure Al (Al1050), Al alloys (Al5052, Al6061), Mg alloys (AZ31, AZ91D) and steel (SCM440) were assessed in 3.5% sodium chloride solution by means of potentiodynamic polarization to verify the galvanic corrosion potential ($E_{couple}$). Potentiostat plots were plotted to compare the surface and corrosion current density ($i_{couple}$) of metals as sacrificial anodes in seawater to protect steel alloy as a cathode. Al alloys showed the best performance as a sacrificial anode, on the other hand, Mg alloys showed overprotection behavior. The surface morphologies of sacrificial anodes were observed by FESEM and compared.

Apparatus on Corrosion Protection and Marine Corrosion of Ship (선박의 해양 부식과 부식방지 장치)

  • Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.3
    • /
    • pp.105-116
    • /
    • 2011
  • Ships and offshore structures are exposed to harsh marine environments, and maintenance and repair are becoming increasingly important to the industry and the economy. The major corrosion phenomenons of metals and alloys in marine environment are pitting corrosion, stress corrosion cracking, crevice corrosion, fatigue corrosion, cavitation-erosion and etc. due to the effect of chloride ions and is quite serious. Methods of protection against corrosion can generally be divided into two groups: anodic protection and cathodic protection. Anodic protection is limited to the passivity characteristics of a material in its environment, while cathodic protection can apply methods such as sacrificial anode cathodic protection and impressed current cathodic protection. Sacrificial anode methods using Al and Zn alloys are widely used for marine structures and vessels intended for use in seawater. Impressed current cathodic protection methods are also widely used in marine environments, but tend to generate problems related to hydrogen embrittlement caused by hydrogen gas generation. Therefore, it is important to the proper maintenance and operation of the various corrosion protection systems for ship in the harsh marine environment.

Corrosion Behavior of Aluminium Coupled to a Sacrificial Anode in Seawater (희생양극 하에서 알루미늄의 해수 부식 거동)

  • Kim Jong-Soo;Kim Hee-San
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.1
    • /
    • pp.25-34
    • /
    • 2006
  • Al-Mg alloy, an open rack vaporizer(ORV) material was reported to be corroded in seawater environments though the ORV material was coupled to thermally sprayed Al-Zn alloy functioning a sacrificial anode. In addition, the corrosion behavior based on the calculated corrosion potential did not match the observed corrosion behavior. Hence, the goal of this study is to get better understanding on Al or Al-Mg alloy coupled to Al-Zn alloy and to provide the calculated corrosion potential representing the corrosion behavior of the ORV material by immersion test, electrochemical tests, and calculation of corrosion and galvanic potential. The corrosion potentials of Al and Al alloys also depended on alloying element as well as surface defects. The corrosion potentials of Al and Al-Mg alloy were changed with time. In the meantime, the corrosion potentials of Al-Zn alloys were not. The corrosion rates of Al-Zn alloys were exponentially increased with zinc contents. The phenomena were explained with the stability of passive film proved by passive current density depending on pH and confirmed by the model proposed by McCafferty. Dissimilar material crevice corrosion (DMCC) test shows that higher content of zinc caused Al-Mg alloy corroded more rapidly, which was due to the fact that higher corrosion rate of Al-Zn makes [$H^+$] and [$Cl^-$] more concentrated within pit solution to corrode Al-Mg alloy. Considering electrochemical reactions within pit as well as bulk in the calculation gives better prediction on the corrosion behavior of Al and Al-Mg alloy as well as the capability of Al-Zn alloy for corrosion protection.

Electrochemical Characteristics of Arc Zn Thermal Spray Coating Layer in Sea Water (해수 내 아크 아연 용사코팅 층의 전기화학적 특성)

  • Park, Il-Cho;Seo, Gwang-Cheol;Lee, Gyeong-Woo;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.6
    • /
    • pp.343-348
    • /
    • 2015
  • In this paper, arc Zn thermal spray coating was carried out on the SS400 steel, and then various electrochemical characteristics and surface damage behavior of Zn thermal spray coating layer were analyzed. As the results, the potential of Zn thermal spray coating layer presented driving voltage above 300 mV compare to that of SS400 steel. The passivity characteristic in anodic polarization curve was not presented. It was adequate to as sacrificial anode material. In the surface damage after galvanostatic experiments, uniform corrosion tendency of Zn thermal spray coating layer was clearly observed with acceleration of the dissolution reaction. In conclusion, Zn thermal spray coating could be determined to represent the corrosion protection effect by stable sacrificial anodic cathodic protection method in seawater because it had sufficient driving voltage and uniform corrosion damage tendency for the SS400 steel.