• Title/Summary/Keyword: Zn Corrosion

Search Result 342, Processing Time 0.02 seconds

Corrosion behavior of Mg-(0~6)%Zn Casting Alloys in 1M NaCl Solution (1M NaCl 용액에서 Mg-(0~6)%Zn 주조 합금의 부식 거동)

  • Hwang, In-Je;Kim, Young-Jig;Jun, Joong-Hwan
    • Journal of Korea Foundry Society
    • /
    • v.36 no.4
    • /
    • pp.117-125
    • /
    • 2016
  • The effects of the Zn content on the microstructure and corrosion behavior in 1M NaCl solution were investigated in Mg-(0~6)%Zn casting alloys. The MgZn phase was scarcely observed in the Mg-1%Zn alloy, while the Mg-(2~6)%Zn alloy consisted of ${\alpha}$-(Mg) and MgZn phases. With an increase in the Zn content, the amount of the MgZn phase was gradually increased. Immersion and electrochemical corrosion tests indicated that the Mg-1%Zn alloy had the lowest corrosion rate among the alloys, and a further increase in the Zn content resulted in the deterioration of the corrosion resistance. Microstructural examinations of the corroded surfaces and EIS analyses of surface corrosion films revealed that the best corrosion resistance at 1%Zn was associated with the absence of MgZn phase particles in the microstructure and the contribution of Zn element to the formation of a protective film on the surface. A micro-galvanic effect by the MgZn particles led to the increased rate of corrosion at a higher Zn content.

Characteristics of Hot-Dip Znmgal Coatings with Ultra-High Corrosion Resistance

  • Sungjoo Kim;Seulgi So;Jongwon Park;Taechul Kim;Sangtae Han;Suwon Park;Heung-yun Kim;Myungsoo Kim;Doojin Paik
    • Corrosion Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.289-295
    • /
    • 2024
  • Zn-Mg-Al alloy hot-dip galvanized steel sheet has high corrosion resistance. Compared to conventional Zn coating with the same coating thickness, the high corrosion resistance Zn-Mg-Al coating is more corrosion-resistant. Various coating compositions are commercially produced and applied in diverse fields. However, these steel sheets typically contain up to 3 wt% magnesium. In recent years, there has been a growing demand for higher corrosion resistance in harsh corrosive environments. Therefore, variations in Mg and Al contents were investigated while evaluating primary properties and performance. As a result, we developed new alloy-coated steel with ultra-high corrosion resistance. A Zn-5 wt%Mg-Al coated steel sheet was evaluated for its corrosion resistance and various properties. As the amount of Mg added increased, the corrosion loss tended to decrease. The corrosion resistance of the coated steel sheet in a particular composition, the Zn-5 wt%Mg-Al coating sheet, was about 1.5 to 2 times higher than that of the conventional Zn-3 wt%Mg-Al coating sheet. Ultimately, this ultra-high corrosion-resistance coated steel sheet will provide a robust solution to conserve Zn resources and contribute to a low-carbon society.

Corrosion Behavior of Zn-Al-Mg Alloy Coated Steel Exposed to Residential Water (일상 생활용수 내 Zn-Al-Mg계 합금도금강재의 부식거동)

  • Jae Won Lee;Sung Jin Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.387-392
    • /
    • 2023
  • The objective of this study was to evaluate corrosion resistance of Zn-Al-Mg alloy coated steel in residential water with trace quantities of Cl-. Comparative evaluations were performed using two commercial coated steel products, GI and Galvalume, as reference samples. Examination of corrosion morphology and measurement of weight loss revealed that the Zn-Al-Mg alloy coated steel exhibited higher corrosion resistance than reference samples. This finding suggests that the alloy coated steel possesses long-term corrosion resistance not only in highly Cl- concentrated environments such as seawater, but also in environments with extremely low levels of Cl- found in residential water. The primary factor contributing to the superior corrosion resistance of the Zn-Al-Mg alloy coated steel in residential water is the formation of an inhibiting corrosion product composed primarily of two phases: Zn5(OH)6(CO3)2 and Zn5(OH)8Cl2·H2O. The preferential dissolution of Mg from the corroded coating layer can increase alkalinity, which might enhance the thermodynamical stability of Zn5(OH)6(CO3)2.

Corrosion Behavior of Rapidly Solidified Mg-Zn-Y Alloys in NaCl Solution

  • Izumi, Shogo;Yamasaki, Michiaki;Sekigawa, Takahiro;Kawamura, Yoshihito
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1043-1044
    • /
    • 2006
  • Compositional dependence of corrosion behavior of rapidly solidified Mg-rich Mg-Zn-Y alloys in NaCl aqueous solution has been investigated. Mg-Zn-Y ternary alloys containing small amounts of Zn exhibited low corrosion rate, although the $Mg_{98}Y_2$ (at. %) binary alloy showed severe corrosion with violet evolution of hydrogen. The alloy with highest corrosion-resistance was $Mg_{97.25}Zn_{0.75_Y_2$, its corrosion rate was about 1 mm year-1 in 0.17 M (1.0 wt. %) NaCl solution. $Mg_{97.25}Zn_{0.75}Y_2$ alloy exhibited passive region in anodic polarization curves when immersed in NaCl solution. Rapidly solidification and small amount of Zn addition may bring about an increase in electrochemical homogeneity of Mg-Zn-Y alloys, resulting in enhancement of corrosion resistance.

  • PDF

Corrosion release behavior of alloy 690 and its application in high-temperature water with Zn injection

  • Liao, Jiapeng;Hu, Yousen;Li, Jinggang;Jin, Desheng;Meng, Shuqi;Ruan, Tianming;Hu, Yisong;Zhang, Ziyu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.984-990
    • /
    • 2022
  • Corrosion release behavior of Alloy 690 in high-temperature water was investigated under the conditions of injected Zn concentrations of 0 ppb, 10 ppb and 50 ppb. A protective oxide film composed of Zn(FexCr1-x)2O4 and Cr2O3 was formed with Zn injection, resulting in a better corrosion resistance. In comparison with the Zn-free condition, the corrosion release rate under the Zn-injection conditions was smaller. The corrosion release inhibiting factors were 1.7 and 1.9 under the conditions of 10 ppb and 50 ppb Zn-injection respectively. A foreseen application of the corrosion and corrosion release rates has been proposed and discussed.

Corrosion Behavior of Zn and Zn-AI Alloy Coated Steels under Cyclic Wet-dry Environments

  • Nishikata, Atsushi;Yadav, Amar Prasad;Tsutsumi, Yusuke;Tsuru, Tooru
    • Corrosion Science and Technology
    • /
    • v.2 no.4
    • /
    • pp.165-170
    • /
    • 2003
  • Atmospheric corrosion behaviors of Zn, Zn-5%Al and Zn-55%A l coated steels have been investigated under cyclic wet-dry environments containing chloride ions. The wet-dry cycle was carried out by alternate exposure to immersion in 0.5 M (or 0.05 M) NaCl solutions and drying at $25^{\circ}C$ and 60 %RH. The polarization resistance $R_p$ and solution resistance $R_s$ were monitored by AC impedance technique. From the obtained $1/R_p$ and $1/R_s$ values, the corrosion rate of the coatings and the Time of Wetness (TOW) were estimated, respectively. Effects of chloride ions and TOW on the corrosion rates of Zn, Zn-5%Al, Zn-55%Al coatings and appearance of red rust (onset of underlying steel corrosion) under wet-dry cycles are discussed on the basis of the corrosion monitoring data.

Corrosion Mechanism According to Localized Damage of Zn-Al-Mg Alloy Coated Steel Sheet Used in Plant Farm (플랜트팜용 3원계 (Zn-Al-Mg) 합금도금 강판의 국부손상에 따른 부식 메커니즘)

  • Jin Sung Park;Jae Won Lee;Sung Jin Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.123-130
    • /
    • 2023
  • This study aimed to evaluate corrosion resistance of steel coated with GI and Zn-Al-Mg alloy using cyclic corrosion test (CCT) with electrochemical polarization and impedance measurements. Results showed that the Zn-Al-Mg alloy coated steel had a much higher corrosion rate than GI coated steel in early stages of corrosion. With prolonged immersion, however, the corrosion rate of the Zn-Al-Mg alloy coated steel greatly decreased, mainly owing to a significant decrease in the cathodic reduction reaction and an increase in polarization resistance at the surface. This was closely associated with the formation of protective corrosion products including Zn5(OH)8Cl2·H2O and Zn6Al2(OH)16CO3. Moreover, when the steel substrate was locally exposed due to mechanical damage, the kinetics of anodic dissolution from the coating layer and the formation of protective corrosion products on the surface of the Zn-Al-Mg alloy coated steel became much faster compared to the case of GI coated steel. This could provide a longer-lasting corrosion inhibition function for Zn-Al-Mg alloy coated steel used in plant farms.

Effect of Heat Treatment on Corrosion Resistance of Zn-Mg-Al Alloy Coated Steel

  • Il Ryoung Sohn;Tae Chul Kim;Sung Ju Kim;Myung Soo Kim;Jong Sang Kim;Woo Jin Lim;Seong Mo Bae;Su Hee Shin;Doo Jin Paik
    • Corrosion Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.283-288
    • /
    • 2024
  • Hot-dip Zn-Mg-Al coatings have a complex microstructure consisting of Zn, Al, and MgZn2 phases. Its crystal structure depends on alloy content and cooling rates. Microstructure and corrosion resistance of these coatings might be affected by heat treatment. To investigate effect of heat treatment on microstructure and corrosion resistance of Zn-Mg-Al coatings, Zn-1.5%Mg-1.5%Al coated steel was heated up to 550 ℃ at a heating rate of 80 ℃/s and cooled down to room temperature. At above 500 ℃, the ternary phase of Zn-MgZn2-Al was melted down. Only Zn and MgZn2 phases remained in the coating. Heat- and non-heat-treated specimens showed similar corrosion resistance in Salt Spray Test (SST). When a Zn-3.0%Mg-2.5%Al coated steel was subjected to heat treatment at 100 ℃ or 300 ℃ for 200 h and compared with GA and GI coated steels, the microstructure of coatings was not significantly changed at 100 ℃. However, at 300 ℃, most Al in the coating reacted with Fe in the substrate, forming a Fe-Al compound layer in the lower part of the coating. MgZn2 was preferentially formed in the upper part of the coating. As a result of SST, Zn-Mg-Al coated steels showed excellent corrosion resistance, better than GA and GI.

Effect of Trace Amount of Ca on Corrosion Resistance of Solutionized Mg-4%Zn Alloy (용체화처리된 Mg-4%Zn 합금의 부식 저항성에 미치는 미량 Ca 첨가의 영향)

  • Jun, Joong-Hwan;Hwang, In-Je
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.4
    • /
    • pp.168-175
    • /
    • 2016
  • Influence of trace amount of Ca addition on the corrosion resistance was comparatively investigated in solutionized Mg-4%Zn and Mg-4%Zn-0.1%Ca alloys. In as-cast state, the alloys were characterized by primary ${\alpha}-(Mg)$ dendrite with MgZn intermetallic compound particles. After solution-treatment, both alloys consisted of single ${\alpha}-(Mg)$ phase by dissolution of the compound particles into the matrix. It was found from the immersion and electrochemical corrosion tests that the Mg-4%Zn alloy had better corrosion resistance than the Mg-4%Zn-0.1%Ca alloy. Morphological and compositional analyses on the surface corrosion products indicate that the incorporation of Ca oxide with low PBR value into the surface corrosion products would be responsible for the decreased corrosion resistance of the Ca-containing alloy.

Corrosion Behavior of Aluminium Coupled to a Sacrificial Anode in Seawater (희생양극 하에서 알루미늄의 해수 부식 거동)

  • Kim Jong-Soo;Kim Hee-San
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.1
    • /
    • pp.25-34
    • /
    • 2006
  • Al-Mg alloy, an open rack vaporizer(ORV) material was reported to be corroded in seawater environments though the ORV material was coupled to thermally sprayed Al-Zn alloy functioning a sacrificial anode. In addition, the corrosion behavior based on the calculated corrosion potential did not match the observed corrosion behavior. Hence, the goal of this study is to get better understanding on Al or Al-Mg alloy coupled to Al-Zn alloy and to provide the calculated corrosion potential representing the corrosion behavior of the ORV material by immersion test, electrochemical tests, and calculation of corrosion and galvanic potential. The corrosion potentials of Al and Al alloys also depended on alloying element as well as surface defects. The corrosion potentials of Al and Al-Mg alloy were changed with time. In the meantime, the corrosion potentials of Al-Zn alloys were not. The corrosion rates of Al-Zn alloys were exponentially increased with zinc contents. The phenomena were explained with the stability of passive film proved by passive current density depending on pH and confirmed by the model proposed by McCafferty. Dissimilar material crevice corrosion (DMCC) test shows that higher content of zinc caused Al-Mg alloy corroded more rapidly, which was due to the fact that higher corrosion rate of Al-Zn makes [$H^+$] and [$Cl^-$] more concentrated within pit solution to corrode Al-Mg alloy. Considering electrochemical reactions within pit as well as bulk in the calculation gives better prediction on the corrosion behavior of Al and Al-Mg alloy as well as the capability of Al-Zn alloy for corrosion protection.