• Title/Summary/Keyword: Zn(phen)q

Search Result 5, Processing Time 0.017 seconds

Study on Efficiency Improvement of OLEDs using Zn(phen)q as Electron Transporting Layer (Zn(phen)q를 전자 수송층으로 이용한 OLEDs의 효율 향상에 관한 연구)

  • Kim, Dong-Eun;Kwon, Oh-Kwan;Lee, Burm-Jong;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.313-314
    • /
    • 2005
  • Organic light emitting diodes(OLEDs) are widely used as one of the information display techniques. We synthesized (1,10-phenanthroline)- (8-hydroxyquinoline) [Zn(Phen)q]. We studied the improvement of OLEDs properties using Zn(phen)q. The Ionization Potential(IP) and the Electron Affinity(EA) of Zn(phen)q investigated using cyclic voltammetry(CV). The IP, EA and Eg were 7.leV, 3.4eV and 3.7eV, respectively. The PL spectrum of Zn(phen)q was yellowish green as the wavelength of 535nm. In this study, we used Zn(phen)q as electron transporting layer(ETL) inserted between emitting layer(EML) and cathode. As a result, Zn(phen)q is useful as electron transporting layer to enhance the performance of OLEDs.

  • PDF

Organic electroluminescent device using Zn(phen)q as emitting layer

  • Kim, Won-Sam;You, Jung-Min;Lee, Burm-Jong;Jang, Yoon-Ki;Kwon, Young-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1280-1283
    • /
    • 2005
  • A novel zinc complex, Zn(phen)q, was synthesized from 1,10-phenanthroline (phen) and 8-hydroxyquinoline (q) as organic ligands and its electroluminescent (EL) properties were characterized. The structure of Zn(phen)q was elucidated by FT-IR, UV-Vis and XPS. The complex Zn(phen)q showed thermal stability up to $300^{\circ}C$ under nitrogen flow, which was measured by TGA and DSC. The photoluminescence (PL) of the Zn(phen)q was measured from the THF solution and the solid film on quartz substrate. The PL emission of Zn(phen)q exhibited green light centered at about 505nm. The EL devices were fabricated by the vacuum deposition. The EL devices having the structure of ITO/a-NPD/Zn(phen)q/Li:Al were studied, where 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl(a-NPD) used as a hole transport layer(HTL). a-NPD has high Tg of $96^{\circ}C$ and thus makes the device thermally stable. The EL emission of Zn(phen)q exhibited also green light centered at 532nm.

  • PDF

Electron Transport Properties of Zn(phen)q Compared with Alq3 in OLED

  • Kim, Byoung-Sang;Kim, Dong-Eun;Choi, Gyu-Chae;Park, Jun-Woo;Lee, Burm-Jong;Kwon, Young-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.418-422
    • /
    • 2009
  • We synthesized new electroluminescence materials [(1,10-phenanthroline)(8-hydroxyquinoline)] Zn(phen)q and investigated their electron transport properties. We used Zn(phen)q and $Alq_3$ for the conductive materials and measured their electron transport properties as a function of the organic layer thickness. The difference between Zn(phen)q and $Alq_3$ as electron transporting materials suggests that the electrical properties depends on the carrier injection.

A Study on the efficiency improvement of OLED using Zn-Complex (Zn-complex를 이용한 OLED 효율향상에 관한 연구)

  • Jang, Yoon-Ki;Kim, Byoung-Sang;Lee, Burm-Jong;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.23-24
    • /
    • 2006
  • We have synthesized electroluminescence materials. including [2-(2-hydroxyphenyl)benzoxazole] (Zn(HPB)$_2$), [(2-(2-hydroxyphenyl)benzoxazole)(8-hydoxyquinoline)] (Zn(HPB)q) and [(1, 10-phenanthroline)(8-hydroxyquinoline)] Zn(phen)q. The ionization potential (IP) and electron affinity (EA) of each Zn-complex was measured using cyclic-voltammetry (C-V). Basing on the consideration of matched in the energy levels of the materials. We investigated the electron transporting properties of Zn(HPB)q and Zn(phen)q compared with $Alq_3$, and also we investigated the hole blocking properties of Zn(HPB)$_2$, compared with BCP. As a result, we used Zn-complex to enhance the performance of OLED. Therefore, we demonstrate that Zn(HPB)q and Zn(phen)q are useful as an electron transporting material. Zn(HPB)$_2$ is also good a hole blocking material.

  • PDF

Luminance Properties of Organic Light Emitting Diodes Using Zn-Complexes (Zn-Complexes를 이용한 OLEDs의 발광 특성 연구)

  • Jang, Yoon-Ki;Kim, Doo-Seok;Kim, Byoung-Sang;Kwon, Oh-Kwan;Lee, Burm-Jong;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1890-1892
    • /
    • 2005
  • Recently, high luminance and high efficiency were realized in OLEDs with multilayer structure including emitting materials such as metal-chelate complexes. New luminescent materials, [2- (2-hydroxyphenyl)-quinoline] (Zn(HPB)q), [(1,10-phenanthroline)- (8-hydroxyquinoline)] Zn(Phen)q was synthesized. Zn-Complexes have low molecular compound and thermal stability. The ionization potential(IP) and electron affinity(EA) of Zn-complexes were measured by cyclic-voltammetry(CV). The fundamental structure of the OLEDs was $ITO/{\alpha}$-NPD/Zn-Complex/Al and then we made device structure rightly in energy band gap. We using Zn(Phen)q as emitting layer and Zn(HPB)q as electron transport layer. We measured current density-voltage, luminance-voltage characteristics.

  • PDF