• 제목/요약/키워드: Zn(HPB)q

검색결과 6건 처리시간 0.028초

$Zn(HPB)_2$와 Zn(HPB)q를 이용한 White OLEDs의 전기적 특성 (Electrical Properties of White OLEDs used such as $Zn(HPB)_2$ and Zn(HPB)q)

  • 장윤기;김병상;김두석;이범종;권영수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.416-417
    • /
    • 2006
  • Organic light emitting diodes (OLEDs) show a lot of advantages for display purposes. Because OLEDs provide white light emission with a high efficiency and stability, it is desirable to apply OLEDs as an illumination light source and back light in LCD displays. We synthesized new emissive materials, namely [2-(2-hydroxyphenyl)benzoxazole] ($Zn(HPB)_2$) and [(2-(2-hydroxyphenyl)benzoxazole)(8-hydoxyquinoline)] (Zn(HPB)q), which have a low molecular compound and thermal stability. We studied white OLEDs using $Zn(HPB)_2$ and Zn(HPB)q. The fundamental structures of the white OLEDs were ITO/PEDOT:PSS (23 nm)/NPB (40 nm)/$Zn(HPB)_2$ (40 nm)/Zn(HPB)q (20 nm)/$Alq_3$ (10 nm)/LiAl (120 nm). As a result, we obtained a maximum luminance of $15325\;cd/m^2$ at a current density of $997\;mA/cm^2$. The CIE(Commission International de l'Eclairage) coordinates are (0.28, 0.35) at an applied voltage of 9.75 V.

  • PDF

Zn(HPB)q를 전자수송층으로 이용한 OLED의 전기.광학적 특성 연구 (Properties of Electrical and Optical for OLED using Zn(HPB)q as Electron Transporting Layer)

  • 김동은;박준우;김병상;이범종;권영수
    • 전기학회논문지
    • /
    • 제59권5호
    • /
    • pp.927-931
    • /
    • 2010
  • Recently, high luminance and high efficiency were realized in OLED with multilayer structure including emitting materials such as metal-chelate complexes. We synthesized a new luminescent material, namely, [2-(2-hydroxyphenyl)quinoline] (Zn(HPB)q) which has low molecular compound and emitted in yellowish green region. The ionization potential(IP) and electron affinity(EA) of Zn(HPB)q were measured by cyclic-voltammetry(CV). As a result, IP and EA of Zn(HPB)q were calculated 6.8 eV and 3.5 eV, respectively. We fabricated the devices and observed the possibility of Zn(HPB)q as electron transporting layer. We have obtained an improvement of luminance and decrease of turn-on voltage using Zn(HPB)q as electron transporting layer.

$Zn(HPB)_2$와 Zn(HPB)q를 이용한 White OLED의 색순도 향상에 관한 연구 (Improvements of Color Purity in White OLED using $Zn(HPB)_2$ and Zn(HPB)q)

  • 장수현;백선진;최규채;이학대;권영수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.2018-2019
    • /
    • 2007
  • Organic light emitting diodes (OLEDs) show a lot of advantages for display purposes. Because OLEDs provide white light emission with a high efficiency and stability, it is desirable to apply OLEDs as an illumination light source and back light in LCD displays. We synthesized new emissive materials, namely $Zn(HPB)_2$ and Zn(HPB)q, which have a low molecular compound and thermal stability. We studied white OLEDs using $Zn(HPB)_2$ and Zn(HPB)q. The fundamental structures of the white OLEDs were ITO / NPB (40 nm) / $Zn(HPB)_2$ (40 nm) / Zn(HPB)q (20 nm) / LiAl (120nm). As a result, we obtained a maximum luminance of $15325cd/m^2$ at a current density of $997\;mA/cm^2$. The CIE (Commission International de l'Eclairage) coordinates are (0.28, 0.35) at an applied voltage of 9.75 V.

  • PDF

Zn-complex를 이용한 OLED 효율향상에 관한 연구 (A Study on the efficiency improvement of OLED using Zn-Complex)

  • 장윤기;김병상;이범종;권영수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 영호남 합동 학술대회 및 춘계학술대회 논문집 센서 박막 기술교육
    • /
    • pp.23-24
    • /
    • 2006
  • We have synthesized electroluminescence materials. including [2-(2-hydroxyphenyl)benzoxazole] (Zn(HPB)$_2$), [(2-(2-hydroxyphenyl)benzoxazole)(8-hydoxyquinoline)] (Zn(HPB)q) and [(1, 10-phenanthroline)(8-hydroxyquinoline)] Zn(phen)q. The ionization potential (IP) and electron affinity (EA) of each Zn-complex was measured using cyclic-voltammetry (C-V). Basing on the consideration of matched in the energy levels of the materials. We investigated the electron transporting properties of Zn(HPB)q and Zn(phen)q compared with $Alq_3$, and also we investigated the hole blocking properties of Zn(HPB)$_2$, compared with BCP. As a result, we used Zn-complex to enhance the performance of OLED. Therefore, we demonstrate that Zn(HPB)q and Zn(phen)q are useful as an electron transporting material. Zn(HPB)$_2$ is also good a hole blocking material.

  • PDF

Zn-Complexes를 이용한 OLEDs의 발광 특성 연구 (Luminance Properties of Organic Light Emitting Diodes Using Zn-Complexes)

  • 장윤기;김두석;김병상;권오관;이범종;권영수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 C
    • /
    • pp.1890-1892
    • /
    • 2005
  • Recently, high luminance and high efficiency were realized in OLEDs with multilayer structure including emitting materials such as metal-chelate complexes. New luminescent materials, [2- (2-hydroxyphenyl)-quinoline] (Zn(HPB)q), [(1,10-phenanthroline)- (8-hydroxyquinoline)] Zn(Phen)q was synthesized. Zn-Complexes have low molecular compound and thermal stability. The ionization potential(IP) and electron affinity(EA) of Zn-complexes were measured by cyclic-voltammetry(CV). The fundamental structure of the OLEDs was $ITO/{\alpha}$-NPD/Zn-Complex/Al and then we made device structure rightly in energy band gap. We using Zn(Phen)q as emitting layer and Zn(HPB)q as electron transport layer. We measured current density-voltage, luminance-voltage characteristics.

  • PDF

Zn-complexes를 이용한 White OLED의 효율 향상 관한 연구 (Improvements of Efficiency in White OLED using Zn-complexes)

  • 김동은;최규채;권영수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 Techno-Fair 및 합동춘계학술대회 논문집 전기물성,응용부문
    • /
    • pp.167-168
    • /
    • 2008
  • Organic light emitting diodes (OLEDs) show a lot of advantages for display purposes. Because OLEDs provide white light emission with a high efficiency and stability, it is desirable to apply OLEDs as an illumination light source and back light in LCD displays. We synthesized new emissive materials, namely $Zn(HPB)_2$ and Zn(HPB)q, which have a low molecular compound and thermal stability. We studied white OLEDs using $Zn(HPB)_2$ and $Zn(PQ)_2$. The fundamental structures of the white OLEDs were ITO / NPB (40 nm) / $Zn(HPB)_2$ (40 nm) / $Zn(PQ)_2$ (20 nm) / LiAl (120 nm). As a result, we obtained a maximum luminance of $4200cd/m^2$ at a current density of $440mA/cm^2$. The CIE (Commission International de l'Eclairage) coordinates are (0.319, 0.338) at an applied voltage of 10 V.

  • PDF