• Title/Summary/Keyword: Zirconium oxide (Zirconia)

Search Result 45, Processing Time 0.021 seconds

Physical and Chemical Investigation of Substrate Temperature Dependence of Zirconium Oxide Films on Si(100)

  • Chun, Mi-Sun;Moon, Myung-Jun;Park, Ju-Yun;Kang, Yong-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2729-2734
    • /
    • 2009
  • We report here the surface behavior of zirconium oxide deposited on Si(100) substrate depending on the different substrate temperatures. The zirconium oxide thin films were successfully deposited on the Si(100) surfaces applying radio-frequency (RF) magnetron sputtering process. The obtained zirconium oxide films were characterized by X-ray photoelectron spectroscopy (XPS) for study about the chemical environment of the elements, X-ray diffraction (XRD) for check the crystallinity of the films, spectroscopic ellipsometry (SE) technique for measuring the thickness of the films, and the morphology of the films were investigated by atomic force microscope (AFM). We found that the oxidation states of zirconium were changed from zirconium suboxides ($ZrO_{x,y}$, x,y < 2) (x; higher and y; lower oxidation state of zirconium) to zirconia ($ZrO_2$), and the surface was smoothed as the substrate temperature increased.

Effect of Zirconia Particle Addition on Curing Behavior of Phenolic Resins (Zirconia 입자의 첨가가 페놀 수지의 경화거동에 미치는 영향)

  • Yun, Jaeho;Kim, Hanjun;Lee, Jae Min;Kim, Jong Hee;Lee, Seung Goo
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.288-297
    • /
    • 2022
  • This study investigated the effect of addition of zirconia(zirconium oxide) powder on the curing behavior of phenolic resins. The heating rate controlled curing and isothermal curing behaviors of the phenol resin according to the content of the zirconia powder were analyzed. The viscosity and thermal decomposition characteristics of the phenolic resin with the zirconia content were also examind. From the DSC analysis, the degree of cure and the rate of cure were obtained. Finally, the activation energy for the cure reaction were calculated from the DSC data of the zirconia added phenolic resin. As a found, the higher the zirconia content, the longer the curing was delayed and the greater the activation energy required for curing. Additionally, the TGA result that as the content of zirconia increased, less weight loss was observed. The surface tackiness of the Carbon/Phenol prepreg was partially changed according to the zirconia content, but had no significant effect.

The Properties of RF Sputtered Zirconium Oxide Thin Films at Different Plasma Gas Ratio

  • Park, Ju-Yun;Heo, Jin-Kook;Kang, Yong-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.397-400
    • /
    • 2010
  • Zirconium oxide thin films deposited on the p-type Si(100) substrates by radio-frequency (RF) reactive magnetron sputtering with different plasma gas ratios have been studied by using spectroscopic ellipsometry (SE), atomic force microscopy (AFM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The deposition of the films was monitored by the oxygen gas ratio which has been increased from 0 to 80%. We found that the thickness and roughness of the zirconium oxide thin films are relatively constant. The XRD revealed that the deposited thin films have polycrystalline phases, Zr(101) and monoclinic $ZrO_2$ ($\bar{1}31$). The XPS result showed that the oxidation states of zirconium suboxides were changed to zirconia form with increasing $O_2$ gas ratio.

CELLULAR ATTACHMENT AND GENE EXPRESSION OF OSTEOBLAST-LIKE CELLS ON ZIRCONIA CERAMIC SURFACES

  • Pae, Ah-Ran;Lee, Hee-Su;Kim, Hyeong-Seob; Baik, Jin;Woo, Yi-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.3
    • /
    • pp.227-237
    • /
    • 2008
  • STATEMENT OF PROBLEM: Zirconium oxide can be a substitute to titanium as implant materials to solve the esthetic problems of dark color in the gingival portion of implant restorations. PURPOSE: This study was performed to define attachment and growth behavior of osteoblast- like cells cultured on grooved surfaces of zirconium oxide and evaluate the genetic effect of zirconium oxide surfaces using the reverse transcriptase-polymerase chain reaction (RT-PCR). MATERIAL AND METHODS: MC3T3-E1 cells were cultured on (1) commercially pure titanium discs with smooth surface (T group), (2) yttrium-stabilized tetragonal zirconia polycrystal (Y-TZP) with machined surface (ZS group), and (3) Y-TZP with $100{\mu}m$ grooves (ZG group). Cell proliferation activity was evaluated through MTT assay and cell morphology was examined by SEM. The mRNA expression of Runx2, alkaline phosphatase, osteocalcin, TGF-${\beta}1$, IGF-1, G3PDH in E1 cells were evaluated by RT-PCR. RESULTS: From the MTT assay, after 48 hours of adhesion of MC3T3-E1 cells, the mean optical density value of T group and ZG group significantly increased compared to the ZS group. SEM images of osteoblast-like cells showed that significantly more cells were observed to attach to the grooves and appeared to follow the direction of the grooves. After 24 hours of cell adhesion, more spreading and flattening of cells with active filopodia formation occurred. Results of RT-PCR suggest that T group, ZS group, and ZG group showed comparable osteoblast-specific gene expression after 24 hours of cell incubation. CONCLUSION: Surface topography and material of implants can play an important role in expression of osteoblast phenotype markers. Zirconia ceramic showed comparable biological responses of osteoblast-like cells with titanium during a short-time cell culture period. Also, grooves influence cell spreading and guide the cells to be aligned within surface grooves.

Synthesis of Zr0.73Y0.27O1.87 Crystals by the Bridgman-Stockbager Method

  • Kim, Won-Sa;Yu, Young-Moon;Lee, Jin-Ho
    • Journal of the Korean earth science society
    • /
    • v.23 no.1
    • /
    • pp.52-58
    • /
    • 2002
  • A colorless and transparent zirconium oxide ($Zr_{0.73}Y_{0.27}O_{1.87}$) crystal has been synthesized by the Bridgman-Stockbager method. The gem-quality material is produced by adding 20${\sim}$25 wt.% $Y_2O_3$ (stabilizer) and 0.04 wt.% $Nd_2O_3$ (decolorising agent) to the $ZrO_2$ powder. It shows a vitreous luster with a slight oily appearance. Under a polarizing microscope, it shows isotropic nature with no appreciable anisotropism. Mohs hardness value and specific gravity is measured to be 8${\sim}$$8{\frac{1}{2}}$ and 5.85, respectively. Under ultraviolet light it shows a faint white glow. The crystal structure of yttria-stabilized zirconia with 0.27 at.% Y has been re-investigated, using single crystal X-ray diffraction, and confirmed to be a cubic symmetry, space group $Fm{\overline{3}}m$ ($O^5_h$) with a=5.1552(5) ${{\AA}}$, V=136.99(5) ${{\AA}}^3$, Z=4. The stabilizer atoms randomly occupy the zirconium sites and there are displacements of oxygen atoms with amplitudes of ${\Delta}/a{\sim}$0.033 and 0.11 along <110> and <111> from the ideal positions of the fluorite structure, respectively.

Bio-hybrid dental implants prepared using stem cells with β-TCP-coated titanium and zirconia

  • Safi, Ihab Nabeel;Hussein, Basima Mohammed Ali;Al-Shammari, Ahmed Majeed
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.3
    • /
    • pp.242-257
    • /
    • 2022
  • Purpose: This study investigated periodontal ligament (PDL) restoration in osseointegrated implants using stem cells. Methods: Commercial pure titanium and zirconium oxide (zirconia) were coated with beta-tricalcium phosphate (β-TCP) using a long-pulse Nd:YAG laser (1,064 nm). Isolated bone marrow mesenchymal cells (BMMSCs) from rabbit tibia and femur, isolated PDL stem cells (PDLSCs) from the lower right incisor, and co-cultured BMMSCs and PDLSCs were tested for periostin markers using an immunofluorescent assay. Implants with 3D-engineered tissue were implanted into the lower right central incisors after extraction from rabbits. Forty implants (Ti or zirconia) were subdivided according to the duration of implantation (healing period: 45 or 90 days). Each subgroup (20 implants) was subdivided into 4 groups (without cells, PDLSC sheets, BMMSC sheets, and co-culture cell sheets). All groups underwent histological testing involving haematoxylin and eosin staining and immunohistochemistry, stereoscopic analysis to measure the PDL width, and field emission scanning electron microscopy (FESEM). The natural lower central incisors were used as controls. Results: The BMMSCs co-cultured with PDLSCs generated a well-formed PDL tissue that exhibited positive periostin expression. Histological analysis showed that the implantation of coated (Ti and zirconia) dental implants without a cell sheet resulted in a well-osseointegrated implant at both healing intervals, which was confirmed with FESEM analysis and negative periostin expression. The mesenchymal tissue structured from PDLSCs only or co-cultured (BMMSCs and PDLSCs) could form a natural periodontal tissue with no significant difference between Ti and zirconia implants, consequently forming a biohybrid dental implant. Green fluorescence for periostin was clearly detected around the biohybrid implants after 45 and 90 days. FESEM showed the invasion of PDL-like fibres perpendicular to the cementum of the bio-hybrid implants. Conclusions: β-TCP-coated (Ti and zirconia) implants generated periodontal tissue and formed biohybrid implants when mesenchymal-tissue-layered cell sheets were isolated from PDLSCs alone or co-cultured BMMSCs and PDLSCs.

The effect of coloring liquids on the translucency of zirconia framework

  • Tuncel, Ilkin;Eroglu, Erdal;Sari, Tugrul;Usumez, Aslihan
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.4
    • /
    • pp.448-451
    • /
    • 2013
  • PURPOSE. Translucency of all-ceramic restorations is an important factor which affects the final appearance and esthetic outcome of the restoration. The aim of this study was to evaluate the effect of the shade of coloring liquid on the translucency of zirconia framework. MATERIALS AND METHODS. Thirty zirconium oxide core plate ($15{\times}12{\times}0.5$ mm) were divided into 6 groups of 5 plates each. Each group was classified according to the shade of coloring liquid based on Vita Classic Scale (A2, A3, B1, C2, and D2), and each sample was immersed in coloring liquid for 3 seconds as recommended by the manufacturer, except for the control group. Contrast ratio, as a translucency parameter, was calculated using a spectrophotometer and the data were analyzed with oneway analysis of variance (ANOVA) and Tukey's honestly significant differences (HSD) tests (${\alpha}$=.05). RESULTS. Significant differences in translucency among the control and test groups, and the B1 shaded group and other shades was observed. There were no significant differences among A2, A3, C2, and D2 shaded groups. CONCLUSION. The translucency of the zirconium oxide cores was affected by the coloring procedure and significant differences in the translucency measurements were identified between specific shades.

Comparison of Yittria Stabilized Zirconia Electrolytes(YSZ) for Thin Film Solid Oxide Fuel Cell by Atomic Layer Deposition and Sputtering (원자층 증착법과 스퍼터링을 이용한 고체산화물 연료전지용 YSZ 전해질에 관한 연구)

  • Tanveer, Waqas Hassan;Ha, Seung Bum;Ji, Sanghoon;Cha, Suk Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.84.2-84.2
    • /
    • 2011
  • In this research, two thin film deposition techniques, Atomic Layer Deposition and Sputtering are carried out for the fabrication of Yittria Stabilized Zirconia electrolyte for thin film Solid Oxide Fuel Cell. Zirconium to Yittrium ratio for both cases is about 1/8. Scanning Electron Microscope(SEM) image shows that the growth rate per hour for Atomic Layer Deposition is faster than for sputtering. X-ray Photo-electron Spectroscopy(XPS) shows that the peaks of both Zirconia and Yittria shift towards higher bending energy for the case of Atomic Layer deposition and thus are more strongly attached to the substrate. Later, Nyquist plot was used to compare the conductivity of Yittria Stabilized Electrolyte for both cases. The conductivity at $300^{\circ}C$ for Atomic Layer Deposited Yittria Stabilized Zirconia is found to be $5{\times}10^{-4}S/cm$ while that for sputtered Yittria Stabilized Zirconia is $2{\times}10^{-5}S/cm$ at the same temperature. The reason for better performance for Atomic Layered YSZ is believed to be the Nano-structured layer fabrication that aids in along the plane conduction as compared to the columnarly structured Sputtered YSZ.

  • PDF

Influence of cement thickness on resin-zirconia microtensile bond strength

  • Lee, Tae-Hoon;Ahn, Jin-Soo;Shim, June-Sung;Han, Chong-Hyun;Kim, Sun-Jai
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.3
    • /
    • pp.119-125
    • /
    • 2011
  • PURPOSE. The aim of this study was to evaluate the influence of resin cement thickness on the microtensile bond strength between zirconium-oxide ceramic and resin cement. MATERIALS AND METHODS. Thirty-two freshly extracted molars were transversely sectioned at the deep dentin level and bonded to air-abraded zirconium oxide ceramic disks. The specimens were divided into 8 groups based on the experimental conditions (cement type: Rely X UniCem or Panavia F 2.0, cement thickness: 40 or 160 ${\mu}m$, storage: thermocycled or not). They were cut into microbeams and stored in $37^{\circ}C$ distilled water for 24 h. Microbeams of non-thermocycled specimens were submitted to a microtensile test, whereas those of thermocycled groups were thermally cycled for 18,000 times immediately before the microtensile test. Three-way ANOVA and Sheffe's post hoc tests were used for statistical analysis (${\alpha}$=95%). RESULTS. All failures occurred at the resin-zirconia interface. Thermocycled groups showed lower microtensile bond strength than non-thermocycled groups (P<.001). Differences in cement thickness did not influence the resin-zirconia microtensile bond strength given the same resin cement or storage conditions (P>.05). The number of adhesive failures increased after thermocycling in all experimental conditions. No cohesive failure was observed in any experimental group. CONCLUSION. When resin cements of adhesive monomers are applied over air-abraded zirconia restorations, the degree of fit does not influence the resin-zirconia microtensile bond strength.

The effect of Rh/Ce/Zr additives on the redox cycling of iron oxide for hydrogen storage (산화철의 환원-산화 반응을 이용한 수소저장에 미치는 Rh/Ce/Zr의 효과)

  • Lee, Dong-Hee;Cha, Kwang-Seo;Park, Chu-Sik;Kang, Kung-Soo;Kim, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.49-52
    • /
    • 2007
  • We investigated hydrogen storage and production properties using redox system of iron oxide($Fe_{3}O_{4}$ + $4H_{2}$ ${\leftrightarrows}$ 3Fe + $4H_{2}O$) modified with rhodium, ceria and zirconia under atmospheric pressure. Reduction of iron oxide with hydrogen(hydrogen storage) and re-oxidation of reduced iron oxide with steam(hydrogen evolution) was carried out using a temperature programmed reaction(TPR) technique. On the temperature programmed studies, the effects of amounts of cerium and zirconium on the re-oxidation rate of partial reduced iron oxides were increased with increasing metal additives amount, but the rhodium amount showed little effect on the re-oxidation rate. On the thermal studies, the re-oxidation rates were enhanced with increasing temperature(300 $^{\circ}C$ < 350 $^{\circ}C$).

  • PDF