• Title/Summary/Keyword: Zirconia ceramics

Search Result 254, Processing Time 0.023 seconds

Effects of Pre-sintered Granules on the Characteristics of Porous Zirconia (가소결된 그레뉼이 다공질 지르코니아 세라믹스의 특성에 미치는 영향)

  • Lee, Eun-Jung;Ha, Jang-Hoon;Kim, Yang-Do;Song, In-Hyuck
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.566-574
    • /
    • 2012
  • Porous zirconia ceramics are widely considered to be important due to their unique properties and potential applications. In this paper, we propose a novel approach to produce porous zirconia ceramics. The linear shrinkage of the prepared porous zirconia ceramics could be controlled to 4% by incorporating pre-sintered zirconia granules and hollow polymeric spheres. We also investigated the effect of pre-sintered zirconia granules on the microstructure and the properties, such as the porosity, pore distribution, and bending strength of the porous zirconia ceramics.

Investigation on the Pore Properties of the Microcellular ZrO2 Ceramics Using Hollow Microsphere (중공형 미세구를 이용한 마이크로셀룰라 지르코니아의 가공 특성 고찰)

  • Lee, Eun-Jung;Song, In-Hyuek;Kim, Hai-Doo;Kim, Young-Wook;Bae, Ji-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.108-115
    • /
    • 2009
  • In this study, a novel-processing route for producing microcellular zirconia ceramics has been developed. The proposed strategy for making the microcellular zirconia ceramics involves hollow microsphere as a pore former which has extremely low density of $0.025\;g/cm^3$. Effects of hollow microsphere content and sintering temperature on microstructure, porosity, pore distribution, and compressive strength were investigated in the processing of microcellular zirconia ceramics. By controlling the content of hollow microsphere, it was possible to make the porous zirconia ceramics with porosities ranging from 45% to 75%. Typical compressive strength value of microcellular zirconia ceramics with ${\sim}65%$ porosity was over 50 MPa. By adjusting the mixing ratio of large and small zirconia powders, it was possible to control the pore structure from close to open pores.

Effect of Template Size Ratio on Porosity and Strength of Porous Zirconia Ceramics (기공형성제 크기 비(ratio)가 다공질 지르코니아 세라믹스의 기공율과 강도에 미치는 영향)

  • Chae, Su-Ho;Kim, Young-Wook;Song, In-Hyuek;Kim, Hai-Doo;Bae, Ji-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.9
    • /
    • pp.537-543
    • /
    • 2008
  • Effect of template size ratio on porosity and mechanical properties of porous zirconia ceramics were investigated using two different size (${\sim}8{\mu}m$ and ${\sim}50{\mu}m$ in diameter) of polymethyl methacrylate-coethylene glycol dimethacrylate (PMMA) microbeads as sacrificial templates. Porosity of the porous zirconia ceramics increased with decreasing the template size ratio ($8{\mu}m: 50{\mu}m$) whereas the compressive and flexural strengths of the porous zirconia ceramics increased with increasing the template size ratio. By controlling the template size ratio, sintering temperature and sintering time, it was possible to produce porous zirconia ceramics with porosities ranging from 57% to 69%. Typical flexural and compressive strength values of porous zirconia ceramics with ${\sim}60%$ porosity were ${\sim}37\;MPa$ and ${\sim}85\;MPa$, respectively.

Effect of Pore Formers and Sintering Temperatures on Microstructure and Bending Strength of the Porous Zirconia Ceramics (기공 형성제 조절과 소결 온도의 변화가 다공질 지르코니아 세라믹스의 미세구조 및 강도에 미치는 영향)

  • Lee, Eun-Jung;Song, In-Hyuck;Ha, Jang-Hoon;Hahn, Yoo-Dong;Kim, Yang-Do
    • Journal of Powder Materials
    • /
    • v.18 no.6
    • /
    • pp.502-509
    • /
    • 2011
  • In this study, a novel-processing route for fabricating microcellular zirconia ceramics has been developed. The proposed strategy for making the microcellula zirconia ceramics involved hollow microspheres as pore former. Compared to conventional dense microspheres pore former, well-defined pore structured zirconia ceramics were successfully fabricated. Effects of hollow microsphere content and sintering temperature on microstructure, porosity, pore distribution, and strength were investigated in the processing of microcellular zirconia ceramics.

Influence of surface treatments on the shear bond strength between zirconia ceramic and zirconia veneering ceramics (지르코니아의 표면 처리에 따른 전장용 세라믹과의 전단결합강도)

  • Ahn, Jae-Seok;Lee, Jung-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.35 no.1
    • /
    • pp.19-27
    • /
    • 2013
  • Purpose: The aim of this research was to evaluate the shear bond strength of different zirconia veneering ceramics with and without liner glass materials to yttria partially-stabilized tetragonal zirconia polycrystalline(Y-TZP). Methods: Five co mmercial zirconia veneering ceramics were used in this study, E-Max(EM), Creation ZI(CR), Cercon ceram kiss(CE), Triceram(TR) and Zirkonzahn ICE(ZI). All samples were prepared according to manufacturer's instructions. Experimental industrially manufactured Y-TZP ceramic blocks(diameter: 2.7 mm; height: 13.5 mm) were used in this study. Shear bond strength between zirconia ceramic coping and zirconia veneering ceramics were evaluated by the push-shear bond test. The fracture load data were analyzed using ANOVA and Scheffe's test(${\alpha}$=0.05). The fractured surfaces of zirconia core ceraimc and zirconia veneering ceramics were observed using a scanning electron microscope(SEM). Results: The mean shear bond strengths ranged from 20 MPa ($20.12{\pm}6.34$ MPa) to 66.6 MPa ($66.62{\pm}10.01$ MPa). The Triceram(TRG) showed the highest value and Creation ZI(CR) showed the lowest value. In all groups, Zirconia liner and glass material groups was significantly higher shear bond strength than without liner(P<0.05), with the exception of Cercon ceram kiss(CE)groups. Conclusion: Zirconia bonding materials may have the advantage of improved bond strength between zirconia ceramic core and veneering ceramics.

Porosity Control of Porous Zirconia Ceramics (다공질 지르코니아 세라믹스의 기공율 제어)

  • Chae, Su-Ho;Eom, Jung-Hye;Kim, Young-Wook;Song, In-Hyuek;Kim, Hai-Doo;Bae, Ji-Soo;Na, Sang-Moon;Kim, Seung-Il
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.1
    • /
    • pp.65-68
    • /
    • 2008
  • A simple pressing process using zirconia and microbead for fabricating porous zirconia ceramics is demonstrated. Effects of microbead content and sintering temperature on microstructure, porosity, compressive and flexural strengths were investigated in the processing of porous zirconia ceramics using microbead as a pore former. By controlling the microbead content and the sintering temperature, it was possible to produce porous zirconia ceramics with porosities ranging from 43% to 70%. Typical compressive and flexural strength values at ${\sim}50%$ porosity were ${\sim}150\;MPa$ and ${\sim}35\;MPa$, respectively.

Influence of LPPS Spraying Parameters on Deposition Efficiency of Zirconia Powder

  • Shi, Jian-Min;Hu, Zhong-Yin;Huang, Jing-Qi;Ding, Chuan-Xian
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.160-165
    • /
    • 1997
  • Yttria stabilized zirconia coating is an attractive material for several engineering applications. In order to produce coatings with consistent and reliable performance it is important to understand the influence of spraying parameters on the coating properties and optimize the spraying parameters. In this paper the low pressure plasma spray(LPPS) deposition of as-received zirconia powder has been investigated using simple one-factor-at-a-time approach. The deposition efficiency was chosen to evaluate the melting characteristics of the as-received zirconia powder. The results obtained indicated that the deposition efficiency of zirconia powder is very sensitive to the spraying parameters such as plasma gas flow rate and ranges from 24% to 57% The microstructure and the phase composition of zirconia coating deposited with the different plasma spraying parameters were also examined by SEM and XRD respectively. The relationship between deposition efficiency and the microstructure of zirconia coating was discussed.

  • PDF

Synthesis and Properties of Hydroxyapatite-Zirconia Composite Ceramics (Hydroxyapatite-Zirconia 복합 Ceramcis의 제조 및 특성)

  • 송종택;변승호;류동우;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.9
    • /
    • pp.754-760
    • /
    • 1993
  • Hydroxyapatite(HAp)-zirconia composite ceramics were prepared by simplified synthesis process and then their properties were investigated. Composite powders of HAp and zirconia were successively synthesized under Ca/P=1.69, 1.71, 1.73 and pH=11 by precipitation method. HAp-zirconia ceramics were obtained with sintering of these various HAp-zirconia composite powders. These sintered bodies were mainly composed of HAp and ZrO2(tetragonal), but it was found that a little of HAp was decomposed into TCP as the amount of zirconia and the sintering temperature were increased. When HAp having 10~15wt.% ZrO2 content were sintered in the range of 1150 to 130$0^{\circ}C$, the apparent porosity was about 7~11%. This showed that the successive synthesis process employed here had a limit to obtian more densified composite ceramics.

  • PDF

Effects of Template Size and Content on Porosity and Strength of Macroporous Zirconia Ceramics (기공형성제 크기와 함량이 다공질 지르코니아 세라믹스의 가공율과 강도에 미치는 영향)

  • Chae, Su-Ho;Kim, Young-Wook;Song, In-Hyuek;Kim, Hai-Doo;Bae, Ji-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.35-40
    • /
    • 2009
  • Using zirconia and poly (methyl methacrylate-coethylene glycol dimethacrylate) (PMMA) microbeads, macroporous zirconia ceramics were fabricated by a simple pressing method. Effects of template size and content on microstructure, porosity, and flexural and compressive strengths were investigated in the processing of the macroporous zirconia ceramics. Three different sizes of microbeads (8, 20, and $50{\mu}m$) were used as a template for fabricating the macroporous ceramics. The porosity increased with increasing the template size at the same template content. The flexural and compressive strengths were primarily influenced by the porosity rather than the template size. However, the strengths increased with decreasing the template size at the same porosity. By controlling the template size and content, it was possible to produce macroporous zirconia ceramics with porosities ranging from 58% to 75%. Typical flexural and compressive strength values at 60% porosity were ${\sim}30\;MPa$ and ${\sim}75\;MPa$, respectively.

Recent characteristics of dental esthetic restorative ceramics (임상가를 위한 특집 1 - 치과심미수복용 세라믹의 최신 특성평가)

  • Oh, Seunghan
    • The Journal of the Korean dental association
    • /
    • v.51 no.1
    • /
    • pp.6-11
    • /
    • 2013
  • Dental ceramics is well known to have excellent esthetics, biocompatibility as well as high compressive strength. However, the fragility of ceramics against tensile and shear loads leading to the delayed fracture of micro crack on ceramic surface and the backwardness of ceramic fabrication technique limit the usage of ceramic materials in dentistry. Among all ceramic materials, zirconia has been introduced to overcome the drawback of conventional dental ceramics in the field of dentistry due to the nature of zirconia featuring proper opalescence and high fracture toughness. Also, novel manufacturing techniques enable ceramic materials to prepare high esthetic anterior and posterior all ceramic system. In this paper, it is introduced and discussed that novel techniques characterizing the bond strength between zirconia core and veneering ceramics and analyzing the fluorescence of dental ceramics in order to overcome the gap between the results of basic research and the feasibility of the results in the field of dental clinics.