• Title/Summary/Keyword: Zingerone

Search Result 5, Processing Time 0.02 seconds

Renal protective effects of zingerone in a mouse model of sepsis

  • Lee, Bong-Seon;Lee, Changhun;Yang, Sumin;Ku, Sae-Kwang;Bae, Jong-Sup
    • BMB Reports
    • /
    • v.52 no.4
    • /
    • pp.271-276
    • /
    • 2019
  • Zingerone (ZGR), a phenolic alkanone isolated from ginger, has been reported to possess pharmacological activities such as anti-inflammatory and anti-apoptotic effects. This study was initiated to determine whether ZGR could modulate renal functional damage in a mouse model of sepsis and to elucidate the underlying mechanisms. The potential of ZGR treatment to reduce renal damage induced by cecal ligation and puncture (CLP) surgery in mice was measured by assessment of serum creatinine, blood urea nitrogen (BUN), lipid peroxidation, total glutathione, glutathione peroxidase activity, catalase activity, and superoxide dismutase activity. Treatment with ZGR resulted in elevated plasma levels of BUN and creatinine, and of protein in urine in mice with CLP-induced renal damage. Moreover, ZGR inhibited nuclear $factor-{\kappa}B$ activation and reduced the induction of nitric oxide synthase and excessive production of nitric acid. ZGR treatment also reduced the plasma levels of interleukin-6 and tumor necrosis $factor-{\alpha}$, reduced lethality due to CLP-induced sepsis, increased lipid peroxidation, and markedly enhanced the antioxidant defense system by restoring the levels of superoxide dismutase, glutathione peroxidase, and catalase in kidney tissues. Our study showed renal suppressive effects of zingerone in a mouse model of sepsis, suggesting that ZGR protects mice against sepsis-triggered renal injury.

Isolation of ${\beta}-sitosterol$, Phytol and Zingerone $4-O-{\beta}-D-glucopyranoside$ from Chrysanthemum Boreale Makino

  • Kim, Dong-Hyun;Bang, Myun-Ho;Song, Myoung-Chong;Kim, Soon-Un;Chang, Young-Jin;Baek, Nam-In
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.5
    • /
    • pp.284-287
    • /
    • 2005
  • The flowers of Chrysanthemum boreale Makino were extracted with 80% aqueous MeOH, and the concentrated extract was partitioned with n-hexane, EtOAc, n-BuOH and $H_2O$. Two compounds from the n-hexane fraction and one glucoside from the n-BuOH fraction were isolated through the repeated silica gel and ODS column chromatographies. From the result of physico-chemical data including NMR, MS and IR, the chemical structures of the compounds were determined as ${\beta}-sitosterol$ (1), phytol (2) and zingerone $4-O-{\beta}-D-glucopyranoside$ (3). Compounds 2 and 3 were isolated for the first time from this plant.

Ginger and Its Pungent Constituents Non-Competitively Inhibit Serotonin Currents on Visceral Afferent Neurons

  • Jin, Zhenhua;Lee, Goeun;Kim, Sojin;Park, Cheung-Seog;Park, Yong Seek;Jin, Young-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.2
    • /
    • pp.149-153
    • /
    • 2014
  • Nausea and emesis are a major side effect and obstacle for chemotherapy in cancer patients. Employ of antiemetic drugs help to suppress chemotherapy-induced emesis in some patients but not all patients. Ginger, an herbal medicine, has been traditionally used to treat various kinds of diseases including gastrointestinal symptoms. Ginger is effective in alleviating nausea and emesis, particularly, for cytotoxic chemotherapy drug-induced emesis. Ginger-mediated antiemetic effect has been attributed to its pungent constituents-mediated inhibition of serotonin (5-HT) receptor activity but its cellular mechanism of action is still unclear. Emetogenic chemotherapy drugs increase 5-HT concentration and activate visceral vagal afferent nerve activity. Thus, 5-HT mediated vagal afferent activation is essential to provoke emesis during chemotherapy. In this experiment, water extract of ginger and its three major pungent constituent's effect on 5-HT-evoked responses were tested on acutely dispersed visceral afferent neurons with patch-clamp methods. The ginger extract has similar effects to antiemetic drug ondansetron by blocking 5-HT-evoked responses. Pungent constituents of the ginger, [6]-shogaol, [6]-gingerol, and zingerone inhibited 5-HT responses in a dose dependent manner. The order of inhibitory potency for these compounds were [6]-shogaol>[6]-gingerol>zingerone. Unlike well-known competitive 5-HT3 receptor antagonist ondansetron, all tested ginger constituents acted as non-competitive antagonist. Our results imply that ginger and its pungent constituents exert antiemetic effects by blocking 5-HT-induced emetic signal transmission in vagal afferent neurons.

Isolation of a Natural Antioxidant, Dehydrozingerone from Zingiber officinale and Synthesis of lts Analogues for Recognition of Effective Antioxidant and Antityrosinase Agents

  • Kuo, Ping-Chung;Damu, Amooru G.;Cherng, Ching-Yuh;Jeng, Jye-Fu;Teng, Che-Ming;Lee, E-Jian;Wu, Tian-Shung
    • Archives of Pharmacal Research
    • /
    • v.28 no.5
    • /
    • pp.518-528
    • /
    • 2005
  • In the present study, the antioxidative and inhibitory activity of Zingiber officinale Rosc. Rhizomes-derived materials (on mushroom tyrosinase) were evaluated. The bioactive co mponents of Z. officinale rhizomes were characterized by spectroscopic analysis as zingerone and dehydrozingerone, which exhibited potent antioxidant and tyrosinase inhibition activities. A series of substituted dehydrozingerones [(E)-4-phenyl-3-buten-2-ones] were prepared in admirable yields by the reaction of appropriate benzaldehydes with acetone and the products were evaluated in terms of variation in the dehydrozingerone structure. The synthetic analogues were examined for their antioxidant and antityrosinase activities to probe the most potent analogue. Compound 26 inhibited Fe$^{2+}$-induced lipid peroxidation in rat brain homogenate with an IC$_{50}$ = 6.3${\pm}$0.4 ${\mu}$M. In the 1,1-diphenyl- 2-picrylhydrazyl (DPPH) radical quencher assay, compounds 2, 7, 17, 26, 28, and 29 showed radical scavenging activity equal to or higher than those of the standard antioxidants, like ${\alpha}$-tocopherol and ascorbic acid. Compound 27 displayed superior inhibition of tyrosinase activity relative to other examined analogues. Compounds 2, 17, and 26 exhibited non-competitive inhibition against oxidation of 3,4- dihydroxyphenylalanine (L-DOPA). From the present study, it was observed that both number and position of hydroxyl groups on aromatic ring and a double bond between C-3 and C-4 played a critical role in exerting the antioxidant and antityrosinase activity.

The Inhibitory Constituents from the Ginger on a Drug Metabolizing Enzyme CYP3A4 (생강의 약물대사효소 CYP3A4 저해 성분)

  • 차배천;이은희;권준택
    • YAKHAK HOEJI
    • /
    • v.48 no.5
    • /
    • pp.266-271
    • /
    • 2004
  • Ginger (Zingiber officinale Roscoe) is widely used as a common condiment for a variety of foods and beverages. In addition to its extensive utilization as a spice, the fresh or the processed rhizome is a useful crude drug in traditional Chinese medicine. It is considered to possess stomachic, carminative, stimulant, diuretic and antiemetic properties. Chemical studies on the pungent principles of ginger have been carried out by a number of investigators, and 6-gingerol and 6-shogaol as a major pungent substance have been isolated. In this study, the constituents inhibiting a drug metabolizing enzyme CYP3A4 from ginger were investigated. CYP3A4 is responsible for drug metabolism as heme-containing monooxygenases. As a result of experiment, 10-gingerol (lC$_{50}$ 5.75$\mu$M) isolated from EtOAc extract of ginger showed remarkable inhibitory activity compared to 6-gingerol ($IC_{50}$/ 14.56 $\mu$M) and zingerone ($IC_{50}$/ 379.63 $\mu$M). This paper describes the isolation, structure elucidation, and CYP3A4 inhibitory activity of these compounds. The structure of the compounds were identified by instrumental analysis such as LC-mass spectrometer and NMR.R.