• Title/Summary/Keyword: Zinc oxide (ZnO)

Search Result 778, Processing Time 0.031 seconds

Effect of Channel Scaling on Zinc Oxide Thin-Film Transistor Prepared by Atomic Layer Deposition

  • Choi, Woon-Seop
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.6
    • /
    • pp.253-256
    • /
    • 2010
  • Different active layer thicknesses for zinc oxide (ZnO) bottom-contact thin-film transistors (TFTs) were fabricated with a poly-4-vinyphenol polymeric dielectric using injector type atomic layer deposition. The properties of the ZnO TFTs were influenced by the active thickness and width-to-length (W/L) ratio of the device. The threshold voltage of ZnO TFTs shifted positively as the active layer thickness decreased, while the subthreshold slope decreased. The W/L ratio of ZnO TFTs also affected the mobility and subthreshold slope. An optimized TFT structure exhibited an on-tooff current ratio of above 106 with solid saturation.

Influence of Y-Doped on Structural and Optical Properties of ZnO Thin Films Prepared by Sol-Gel Spin-Coating Method

  • Park, Hyunggil;Leem, Jae-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.336-336
    • /
    • 2013
  • Zinc oxide (ZnO) based transparent oxide semiconductors have been studied due to their high transmittance and electrical conductivity. Pure ZnO have unstable optical and electrical properties at high temperatures but doped ZnO thin films can have stable optical and electrical properties. In this paper, transparent oxide semiconductors of Y-doped ZnO thin films prepared by sol-gel method. The ionic radius of $Y^{3+}$ (0.90 A) is close to that of $Zn^{2+}$ (0.74 A), which makes Y suitable dopant for ZnO thin films. The Sn-doped ZnO thin films were deposited onto quartz substrates with different atomic percentages of dopant which were Y/Zn = 0, 1, 2, 3, 4, and 5 at.%. These thin films were pre-heated at $150^{\circ}C$ for 10 min and then annealed at $500^{\circ}C$ or 1 h. The structural and optical properties of the Y-doped ZnO thin films were investigated using field-emission scanning electronmicroscopy (FE-SEM), X-ray diffraction (XRD), UV-visible spectroscopy, and photoluminescence (PL).

  • PDF

The growth of zinc oxide particles by coagulation in aerosol reactor (에어로졸 반응기에서 산화아연 입자의 응집 성장)

  • Lee, Jong Ho;Song, Shin Ae;Park, Seung Bin
    • Particle and aerosol research
    • /
    • v.4 no.2
    • /
    • pp.69-75
    • /
    • 2008
  • Nanosize ZnO particles were prepared by oxidation of zinc vapor and the particle growth was modeled by a coagulation model by assuming that the characteristic time for reaction was much shorter than coagulation time and residence time (${\tau}_{reaction}{\ll}{\tau}_{coagulation}{\ll}{\tau}_{residence}$). Experimental measurement of zinc oxide particles diameter was consistent with the predicted result from the coagulation model. For practical purpose of predicting zinc oxide size in areosol reactor, the constant kernel solution is concluded to be sufficient, Uniqueness of nano-scale property of zinc oxide was confirmed by the higher photocatalytic activity of zinc oxide than nanosize titania particles.

  • PDF

Fabrication of Conductive ZnO Thin Filn Using UV-Enhanced Atomic Layer Deposition

  • Yang, Da-Som;Kim, Hong-Beom;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.373-373
    • /
    • 2012
  • We fabricated conductive zinc oxide (ZnO) thin film at low temperature by UV-enhanced atomic layer deposition. The atomic layer deposition relies on alternate pulsing of the precursor gases onto the substrate surface and subsequent chemisorption of the precursors. In this experiment, diethylzinc (DEZ) and $H_2O$ were used as precursors with UV light. The UV light was very effective to improve the conductivity of the ZnO thin film. The thickness, transparency and resistivity were investigated by ellisometry, UV-visible spectroscopy and Four-point probe.

  • PDF

NO Gas Sensing Characteristics of Wire-Like Layered Composites Between Zinc Oxide and Carbon Nanotube (산화아연과 탄소나노튜브의 선형 층상 복합체의 일산화질소 가스 감지특성)

  • Kim, Ok-Kil;Kim, Hyo-Jin;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.22 no.5
    • /
    • pp.237-242
    • /
    • 2012
  • We report on the NO gas sensing properties of Al-doped zinc oxide-carbon nanotube (ZnO-CNT) wire-like layered composites fabricated by coaxially coating Al-doped ZnO thin films on randomly oriented single-walled carbon nanotubes. We were able to wrap thin ZnO layers around the CNTs using the pulsed laser deposition method, forming wire-like nanostructures of ZnO-CNT. Microstructural observations revealed an ultrathin wire-like structure with a diameter of several tens of nm. Gas sensors based on ZnO-CNT wire-like layered composites were found to exhibit a novel sensing capability that originated from the genuine characteristics of the composites. Specifically, it was observed by measured gas sensing characteristics that the gas sensors based on ZnO-CNT layered composites showed a very high sensitivity of above 1,500% for NO gas in dry air at an optimal operating temperature of $200^{\circ}C$; the sensors also showed a low NO gas detection limit at a sub-ppm level in dry air. The enhanced gas sensing properties of the ZnO-CNT wire-like layered composites are ascribed to a catalytic effect of Al elements on the surface reaction and an increase in the effective surface reaction area of the active ZnO layer due to the coating of CNT templates with a higher surface-to-volume ratio structure. These results suggest that ZnO-CNT composites made of ultrathin Al-doped ZnO layers uniformly coated around carbon nanotubes can be promising materials for use in practical high-performance NO gas sensors.

A Study on the ZnO Anti-reflection Layer of Dye Sensitized Solar Cell using Zinc Nitrate Solution (Zinc nitrate 용액을 이용한 염료감응형 태양전지 반사 방지막에 관한 연구)

  • Choi, Jin-Ho;Seo, Hyun-Woong;Son, Min-Kyu;Kim, Soo-Kyoung;Kim, Byung-Man;Kim, Hee-Je;Prabakar, Kandasamy;Kim, Jong-Rak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.705-710
    • /
    • 2012
  • An anti-reflection layer (AR) is used in the solar cell to improve the amount of the irradiated light, resulting in the improvement of the performance of the solar cell. In this study, the zinc oxide (ZnO) AR is applied to the dye-sensitized solar cell (DSC) by using zinc nitrate solution. The conditions such as solution concentration and sintering temperature for fabricating the ZnO AR are changed to optimize the performance of the AR. As a result, the best performance is shown when the zinc nitrate solution with 100mM concentration is used and the sintering temperature is $600^{\circ}C$. And then, the ZnO AR formed with these optimal conditions is applied to the DSC. Consequently, a DSC with a ZnO AR had an increased current density up to 13.86$mA/cm^2$ and an enhanced efficiency of 6.32%.

Effect of In2O3 Doping on the Properties of ZnO Films as a Transparent Conducting Oxide (투명전도성 ZnO 박막의 특성에 미치는 In2O3 첨가에 따른 영향)

  • Lee, Choon-Ho;Kim, Sun-Il
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.1
    • /
    • pp.57-61
    • /
    • 2004
  • Zinc Oxide (ZnO) have the crystal structure of wurtzite which is semiconducting oxide with band gap energy of 3.3eV. $In_2O_3$-doped ZnO films were fabricated by electron beam evaporation at $400^{\circ}C$ and their characteristics were investigated. The content of $In_2O_3$ in ZnO films had a marked effect on the electrical properties of the films. As $In_2O_3$ content decreased. $In_2O_3$-doped ZnO films was converted amorphous into crystallized films and showed a better characteristics generally as a transparent conducting oxide. As $In_2O_3$-doped ZnO films were prepared by $In_2O_3$-doped ZnO pellet with 0.2at% of $In_2O_3$ content, the value of resistivity was about $6.0 {\times} 10^{-3} {\Omega}cm$. The transmittance was higher than 85% throughout the visible range.

Nd:YVO4 Laser Patterning of Various Transparent Conductive Oxide Thin Films on Glass Substrate at a Wavelength of 1,064 nm

  • Wang, Jian-Xun;Kwon, Sang Jik;Cho, Eou Sik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.2
    • /
    • pp.59-62
    • /
    • 2013
  • At an infra-red (IR) wavelength of 1,064 nm, a diode-pumped Q-switched $Nd:YVO_4$ laser was used for the direct patterning of various transparent conductive oxide (TCO) thin films on glass substrate. With various laser beam conditions, the laser ablation results showed that the indium tin oxide (ITO) film was removed completely. In contrast, zinc oxide (ZnO) film was not etched for any laser beam conditions and indium gallium zinc oxide (IGZO) was only ablated with a low scanning speed. The difference in laser ablation is thought to be due to the crystal structures and the coefficient of thermal expansion (CTE) of ITO, IGZO, and ZnO. The width of the laser-patterned grooves was dependent on the film materials, the repetition rate, and the scanning speed of the laser beam.

ITO/ZnO/Ag/ZnO/ITO Multilayers Films for the Application of a Very Low Resistance Transparent Electrode on Polymer Substrate

  • Ok, Chul-Ho;Han, Jin-Woo;Kim, Jong-Yeon;Kim, Byoung-Yong;Han, Jeong-Min;Moon, Hyun-Chan;Park, Kwang-Bum;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.397-397
    • /
    • 2007
  • Multilayer transparent electrodes, having a much lower electrical resistance than the widely used transparent conducting oxide electrodes, were prepared by using radio frequency magnetron sputtering. The multilayer structure consisted of five layers, indium tin oxided(ITO)/zinc oxide(ZnO)/Ag/oxide(ZnO)/ITO. With about 50nm thick ITO films, the multilayer showed a high optical transmittance in the visible range of the spectrum and had color neutrality. The electrical and optical properties of ITO/ZnO/Ag/ZnO/ITO multilayer were changed mainly by Ag film properties, which were affected by the deposition process of the upper layer. Especially ZnO layer was improved to adhesion of Ag and ITO. A high quality transparent electrode, having a resistance as low as and a high optical transmittance of 91% at 550nm, was obtained. It could satisfy the requirement for the flexible OLED and LCD.

  • PDF