• 제목/요약/키워드: Zinc nanorods

검색결과 67건 처리시간 0.031초

Effect of Al Doping on the Properties of ZnO Nanorods Synthesized by Hydrothermal Growth for Gas Sensor Applications

  • Srivastava, Vibha;Babu, Eadi Sunil;Hong, Soon-Ku
    • 한국재료학회지
    • /
    • 제30권8호
    • /
    • pp.399-405
    • /
    • 2020
  • In the present investigation we show the effect of Al doping on the length, size, shape, morphology, and sensing property of ZnO nanorods. Effect of Al doping ultimately leads to tuning of electrical and optical properties of ZnO nanorods. Undoped and Al-doped well aligned ZnO nanorods are grown on sputtered ZnO/SiO2/Si (100) pre-grown seed layer substrates by hydrothermal method. The molar ratio of dopant (aluminium nitrate) in the solution, [Al/Zn], is varied from 0.1 % to 3 %. To extract structural and microstructural information we employ field emission scanning electron microscopy and X-ray diffraction techniques. The prepared ZnO nanorods show preferred orientation of ZnO <0001> and are well aligned vertically. The effects of Al doping on the electrical and optical properties are observed by Hall measurement and photoluminescence spectroscopy, respectively, at room temperature. We observe that the diameter and resistivity of the nanorods reach their lowest levels, the carrier concentration becomes high, and emission peak tends to approach the band edge emission of ZnO around 0.5% of Al doping. Sensing behavior of the grown ZnO nanorod samples is tested for H2 gas. The 0.5 mol% Al-doped sample shows highest sensitivity values of ~ 60 % at 250 ℃ and ~ 50 % at 220 ℃.

Post-Annealing Effects on Properties of ZnO Nanorods Grown on Au Seed Layers

  • Cho, Min-Young;Kim, Min-Su;Choi, Hyun-Young;Yim, Kwang-Gug;Leem, Jae-Young
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권3호
    • /
    • pp.880-884
    • /
    • 2011
  • ZnO nanorods were grown by hydrothermal method. Two kinds of seed layers, Au film and island seed layers were prepared to investigate the effect of seed layer on ZnO nanorods. The ZnO nanorod on Au island seed layer has more unifom diameter and higher density compared to that of ZnO nanorod on Au film seed layer. The ZnO nanorods on Au island seed layer were annealed at various temperatures ranging from 300 to $850^{\circ}C$. The pinholes at the surface of the ZnO nanorods is formed as the annealing temperature is increased. It is noted that the pyramid structure on the surface of ZnO nanorod is observed at $850^{\circ}C$. The intensity of ZnO (002) diffraction peak in X-ray diffraction pattern and intensity of near band edge emission (NBE) peak in photoluminescence (PL) are increased as the ZnO nanorods were annealed at the temperature of $300^{\circ}C$.

Fabrication of Diameter-tunable Well-aligned ZnO Nanorod Arrays via a Sonochemical Route

  • Jung, Seung-Ho;Oh, Eu-Gene;Lee, Kun-Hong;Jeong, Soo-Hwan;Yang, Yo-Sep;Park, Chan-Gyung
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권9호
    • /
    • pp.1457-1462
    • /
    • 2007
  • A simple and facile sonochemical route was described for the fabrication of diameter-controlled ZnO nanorod arrays on Si wafers. The diameter of ZnO nanorods was controlled by the concentration of zinc cations and hydroxyl anions in aqueous precursor solution. At high concentration of the precursor solution, thick ZnO nanorod arrays were formed. On the contrary, thin ZnO nanorod arrays were formed at low concentration of the precursor solution. The average diameter of ZnO nanorods varies from 40 to 200 nm. ZnO nanorod arrays with sharp tip were also fabricated by the step-by-step decrease in precursor solution concentration. The crystal structure and optical characteristics of ZnO nanorods were investigated by transmission electron microscopy, X-ray diffraction, and photoluminescence spectroscopy. Growth mechanism of ZnO nanorod arrays was also proposed.

Al-doping Effects on Structural and Optical Properties of Prism-like ZnO Nanorods

  • Kim, So-A-Ram;Kim, Min-Su;Cho, Min-Young;Nam, Gi-Woong;Lee, Dong-Yul;Kim, Jin-Soo;Kim, Jong-Su;Son, Jeong-Sik;Leem, Jae-Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.420-420
    • /
    • 2012
  • ZnO seed layer were deposited on quartz substrate by sol-gel method and prism-like Al-doped ZnO nanorods (AZO nanorods) were grown on ZnO seed layer by hydrothermal method with various Al concentration ranging from 0 to 2.0 at.%. Structural and optical properties of the AZO nanorods were investigated by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), photoluminescence (PL). The diameter of the AZO nanorods was smaller than undoped ZnO nanorods and its diameter of the AZO nanorods decreased with increasing Al concentration. In XRD spectrum, it was observed that stress and full width at half maximum (FWHM) of the AZO nanorods decreased and the 'c' lattice constant increased as the Al concentration increased. From undoped ZnO nanorods, it was observed that the green-red emission peak of deep-level emission (DLE) in PL spectra. However, after Al doping, not only a broad green emission peak but also a blue emission peak of DLE were observed.

  • PDF

습식공정 기반 ITO 기판 위 산화아연 나노로드 모폴로지 제어 (Morphology Control of ZnO Nanorods on ITO Substrates in Solution Processes)

  • 신경식;이삼동;정순욱;이상우;김상우
    • 한국전기전자재료학회논문지
    • /
    • 제22권11호
    • /
    • pp.987-991
    • /
    • 2009
  • We report growth of vertically well-aligned zinc oxide (ZnO) nanorods on indium-tin oxide (ITO)/glass substrates using a simple aqueous solution method at low temperature via control of the ZnO seed layer morphology. ZnO nanoparticles acting as seeds are pre-coated on ITO-coated glass substrates. by spin coating to control distribution and density of the ZnO seed nanoparticles. ZnO nanorods were synthesized on the seed-coated substrates in a dipping process into a main growth solution. It was found that the alignment of ZnO nanorods can be effectively manipulated by the spin-coating speed of the seed layer. A grazing incidence X-ray diffraction pattern shows that the ZnO seed layer prepared using the higher spin-coating speed is of uniform seed distribution and a flat surface, resulting in the vertical growth of ZnO nanorods aligned toward the [0001] direction in the main growth process.

Electrodeposition of SnO2-doped ZnO Films onto FTO Glass

  • Yoo, Hyeonseok;Park, Jiyoung;Kim, Yong-Tae;Kim, Sunkyu;Choi, Jinsub
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권1호
    • /
    • pp.61-68
    • /
    • 2019
  • Well aligned $SnO_2$-doped ZnO nanorods were prepared by single step or 2-step electrochemical depositions in a mixture solution of zinc nitrate hexahydrate, ammonium hydroxide solution and 0.1 M tin chloride pentahydrate. The morphologies of electrochemically deposited $SnO_2$-doped ZnO were transformed from plain (or network) structures at low reduction potential to needles on hills at high reduction potential. Well aligned ZnO was prepared at intermediate potential ranges. Reduction reagent and a high concentration of Zn precursor were required to fabricate $SnO_2$ doped ZnO nanorods. When compared to results obtained by single step electrochemical deposition, 2-step electrochemical deposition produced a much higher density of nanorods, which was ascribed to less potential being required for nucleation of nanorods by the second-step electrochemical deposition because the surface was activated in the first-step. Mechanisms of $SnO_2$ doped ZnO nanorods prepared at single step or 2-step was described in terms of applied potential ranges and mass-/charge- limited transfer.

Effects of the buffer layer annealing and post annealing temperature on the structural and optical properties of ZnO nanorods grown by a hydrothermal synthesis

  • 신창미;류혁현;이재엽;허주회;박주현;이태민;최신호
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.24.1-24.1
    • /
    • 2009
  • The zinc oxide (ZnO) material as the II-VI compound semiconductor is useful in various fields of device applications such as light-emitting diodes (LEDs), solar cells and gas sensors due to its wide direct band gap of 3.37eV and high exciton binding energy of 60meV at room temperature. In this study, the ZnO nanorods were deposited onto homogenous buffer layer/Si(100) substrates by a hydrothermal synthesis. The Effects of the buffer layer annealing and post annealing temperature on the structural and optical properties of ZnO nanorods grown by a hydrothermal synthesis were investigated. For the buffer layer annealing case, the annealed buffer layer surface became rougher with increasing of annealing temperature up to $750^{\circ}C$, while it was smoothed with more increasing of annealing temperature due to the evaporation of buffer layer. It was found that the roughest surface of buffer layer improved the structural and optical properties of ZnO nanorods. For the post annealing case, the hydrothermally grown ZnO nanorods were annealed with various temperatures ranging from 450 to $900^{\circ}C$. Similarly in the buffer layer annealing case, the post annealing enhanced the properties of ZnO nanorods with increasing of annealing temperature up to $750^{\circ}C$. However, it was degraded with further increasing of annealing temperature due to the violent movement of atoms and evaporation. Finally, the buffer layer annealing and post annealing treatment could efficiently improve the properties of hydrothermally grown ZnO nanorods. The morphology and structural properties of ZnO nanorods grown by the hydrothermal synthesis were measured by atomic force microscopy (AFM), field emission scanning electron microscopy (SEM), and x-ray diffraction (XRD). The optical properties were also analyzed by photoluminescence (PL) measurement.

  • PDF

저온수열합성방법에 의해 성장한 ZnO 나노로드의 전구체 몰농도 변화에 따른 특성 연구 (The Effect of Precursor Concentration on ZnO Nanorod Grown by Low-temperature Aqueous Solution Method)

  • 문대화;하준석
    • 마이크로전자및패키징학회지
    • /
    • 제20권1호
    • /
    • pp.33-37
    • /
    • 2013
  • 전구체의 농도가 ZnO 나노로드의 성장에 미치는 영향에 대하여 알아보았다. ZnO 나노로드는 수열합성법에 의하여 c-plane 사파이어 상에서 성장되었으며, 전구체 농도가 0.01M에서 0.025M로 증가할 때의 형태적, 구조적, 광학적 성질의 변화에 대하여 주사전자현미경, X-선 회절분석기, 그리고 Photoluminescence(PL) 분석을 통하여 알아보았다. 전구체의 몰 분율이 증가함에 따라서 나노로드의 두께와 길이가 모두 증가하는 경향을 보였으며, 성장 방향은 모두 c-axis 방향임을 알 수 있었다. PL 측정에서의 380 nm파장의 강한 emission으로부터, 수열합성법에 의하여 성장된 ZnO 나노로드는 결함의 영향이 적고 양호하게 성장되어 있음을 확인할 수 있었다.

수열합성 법으로 성장된 산화 아연 나노로드의 전구체 농도에 따른 구조적, 광학적 특성 연구 (Study the Effects of Precursor Concentration on ZnO Nanorod Arrays by Hydrothermal Method)

  • 류혁현
    • 한국진공학회지
    • /
    • 제18권1호
    • /
    • pp.73-78
    • /
    • 2009
  • 본 연구에서는 metal oxide chemical vapor deposition (MOCVD)을 이용하여 p형 실리콘(100) 기판 위에 30 nm 두께의 산화 아연 완충층을 $500^{\circ}C$ 에서 증착 시킨 후, 그 위에 산화 아연 나노로드를 수열합성법을 이용하여 성장시켰다. 그리고 산화아연 나노로드 성장 시 0.02몰${\sim}$0.5몰의 다양한 농도의 전구체를 사용함으로써 그에 따라 변화되는 산화 아연 나노로드의 배열상태, 구조적, 그리고 광학적 특성 평가를 실시하였다. 특성 평가는 FE-SEM(field emission scanning electron microscopy), XRD(X-ray diffraction), 그리고 PL(photoluminescence) 등의 분석 방법들을 통해 이루어졌다 본 연구를 통하여 전구체의 농도가 증가할수록 나노로드의 직경과 길이가 길어지며 0.3몰의 농도에서 뛰어난 광학 특성이 나타나는 것을 발견할 수 있었다.

Photoluminescence property of vertically aligned ZnO nanorods.

  • Das, S.N.;Kar, J.P.;Choi, J.H.;Myoung, J.M.
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 추계학술발표대회
    • /
    • pp.25.2-25.2
    • /
    • 2009
  • Vertically aligned zinc oxide(ZnO) nanorods (NRs) with different surface morphology were grown by metal organic chemical vapor deposition (MOCVD) on sapphire substrate with different deposition condition. Based on the surface morphology, ZnO nanostructures are divided into three types: nanoneedles, nanonails and nanorods with rounded tip. Variable temperature photoluminescence (PL) have employed to probe the exciton recombination in high density and vertically aligned ZnO Nanorod arrays. Low temperature photoluminescence measurements do not show any significant yellow emission, but the near band edge excitonic emission shows very strong dependence with the surface morphology. The recombination properties are expected to be different due to different surface-to-volume ratio and distribution of potential fluctuations of intrinsic defects.

  • PDF