• Title/Summary/Keyword: Zinc iodide

Search Result 18, Processing Time 0.028 seconds

An Improved Synthesis of Methyl p-Hydroxyphenylalkanoates

  • Choi, Hong-Dae;Kowak, Yong-Sil;Geum, Dak-Hyun;Son, Byeng-Wha
    • Archives of Pharmacal Research
    • /
    • v.17 no.3
    • /
    • pp.190-193
    • /
    • 1994
  • Friedel-Crafts reaction isopropoxybenzene with methyl $\alpha$-chloro-$\alpha$-(maethylthio)acetate 1 afforded methyl $\alpha$-methylthio-p-isopropoxyphenylacetate 2d, which was readily converted into methyl p-isopropoxyphenylacetate 3 by reductive desulfurization with zinc dust in acetic acid. Methylation of 3 with sodium hydride and methyl iodide gave methyl $\alpha$-(p-isopropoxyphenyl)propionate 5. Methyl p-hydroxyphenylakanoates (4,6), useful intermediates for some medicines, were easily prepared by treatment of 3 and 5 with titanium tetrachloride, respectively.

  • PDF

Synthesis and Crystal Structure of Zinc Iodide in the Sodalite Cavities of Zeolite A (LTA)

  • Kim, Seok-Han;Park, Man;Son, Young-Ja;Lee, Hyung-Joo;Jeong, Gyo-Cheol;Bae, Myung-Nam;Lim, Woo-Taik
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.567-573
    • /
    • 2007
  • The crystal structure of ZnI2 molecule synthesized in zeolite A (LTA) has been studied by single-crystal X-ray diffraction techniques. A single crystal of |Zn6|[Si12Al12O48]-LTA, synthesized by the dynamic ion-exchange of |Na12|[Si12Al12O48]-LTA with aqueous 0.05 M Zn(NO3)2 and washed with deionized water, was placed in a stream of flowing 0.05 M KI in CH3OH at 294 K for four days. The resulting crystal structure of the product (|K6Zn3(KI)3(ZnI2)0.5|[Si12Al12O48]-LTA, a = 12.1690(10) A) was determined at 294 K by single-crystal X-ray diffraction in the space group Pm3m. It was refined with all measured reflections to the final error index R1 = 0.078 for 431 reflections which Fo > 4σ (Fo). At four crystallographically distinct positions, 3.5 Zn2+ and nine K+ ions per unit cell are found: three Zn2+ and five K+ ions lie on the 3-fold axes opposite 6-rings in the large cavity, two K+ ions are off the plane of the 8-rings, two K+ ions are recessed deeply off the plane of the 8-rings, and the remaining a half Zn2+ ion lie on the 3-fold axes opposite 6-rings in the sodalite cavity. A half Zn2+ ion and an I- ion per unit cell are found in the sodalite units, indicating the formation of a ZnI2 molecule in 50% of the sodalite cavities. Each ZnI2 (Zn-I = 3.35(5) A) is held in place by the coordination of its one Zn2+ ion to the zeolite framework oxygens and by the coordination of its two I- ions to K+ ions through 6-rings (I-K = 3.33(8) A). Three additional I- ions per unit cell are found opposite a 4-ring in the large cavity and form a K3I2+ and two K2ZnI3+ ionic clusters, respectively.

Flexible quantum dot solar cells with PbS-MIx/PbS-BuDT bilayers

  • Choe, Geun-Pyo;Yang, Yeong-U;Yun, Ha-Jin;Im, Sang-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.347.2-347.2
    • /
    • 2016
  • Recently, in order to improve the performance of the colloidal quantum dot solar cells (CQDSCs), various efforts such as the modification of the cell architecture and surface treatment for quantum dot (QD) passivation have been made. Especially, the incorporation of halides into the QD matrix was reported to improve the performances significantly via passivating QD trap states that lower the life-time of the minority-carrier. In this work, we fabricated a lead sulfide (PbS) QD bilayer treated with different ligands and utilized it as a photoactive layer of the CQDSCs. The bottom and top PbS layer was treated using metal iodide ($MI_x$ and butanedithiol (BuDT), respectively. All the depositions and ligand treatments were carried out in air using layer-by-layer spin-coating process. The fabrication of the active layers as well as the n-type zinc oxide (ZnO) layer was successfully carried out on the bendable indium-tin-oxide (ITO)-coated polyethylene terephthalate (PET) substrate, which implies that this technique can be applied to the fabrication of flexible and/or wearable solar cells. The power conversion efficiency (PCE) of the CQDSCs with the architecture of $PET/ITO/ZnO/PbS-MI_x/PbS-BuDT/MoO_x/Ag$ reached 4.2 %, which is significantly larger than that of the cells with single QD (PbS-BuDT) layer.

  • PDF

Resin Synthesis of 1-Aza-15-Crown-5-Styrene-divinylbenzene with Crosslink (가교도를 가진 1-Aza-15-Crown-5-스틸렌-디비닐벤젠 수지 합성)

  • 박성규;김준태;노기환
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.1
    • /
    • pp.63-68
    • /
    • 2002
  • Amount of styrene and divinylbenzene(DVB) was adjusted under injection of nitrogen, copolymer having crosslink of 1%, 2% and 5% was synthesized and zinc chloride was added to it. Put into benzene, swell it, add potassium iodide and 1-aza-15-crown-5 of 21.93g in toluene solution and functional resin which can adsorb heavy metal ions by stir reflex at $55^{\circ}C$ for 30 hours was synthesized. The content of divinylbenzene of this resin was increased as crosslink increase, macroporous gets smaller and the content of chlorine was reduced, which affects macrocyclic ligand in the process of substitution and content of nitrogen was also reduced. And the form of functional synthetic resin was distorted by substitution reaction of hydrogen and chlorine atoms.

Synthesis of a New Hexadendates Schiff's Base and Its Application in the Fabrication of a Highly Selective Mercury(II) Sensor

  • Ganjali, M.R.;Norouzi, P.;Alizadeh, T.;Salavati-Niasari, M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.68-72
    • /
    • 2007
  • A new PVC membrane potentiometric sensor that is highly selective to Hg2+ ions was prepared, using bis(2-hydroxybenzophenone) butane-2,3-dihydrazone (HBBD) as an excellent hexadendates neutral carrier. The sensor works satisfactorily in the concentration range of 1.0 × 10-6 to 1.0 × 10-1 mol L-1 (detection limit 4 × 10-7 mol L-1) with a Nernstian slope of 29.7 mV per decade. This electrode showed a fast response time (~8 s) and was used for at least 12 weeks without any divergence. The sensor exhibits good Hg2+ selectivity for a broad range of common alkali, alkaline earth, transition and heavy metal ions (lithium, sodium, potassium, magnesium, calcium, copper, nickel, cobalt, zinc, cadmium, lead and lanthanum). The electrode response is pH independent in the range of 1.5-4.0. Furthermore, the developed sensor was successfully used as an indicator electrode in the potentiometric titration of mercury ions with potassium iodide and the direct determination of mercury in some binary and ternary mixtures.

Photovoltaic Performence of Dye-sensitized Solar Cells using ZnO nanostructures (ZnO 나노구조체를 이용한 염료감응형 태양전지의 광전효율)

  • Lee, JeongGwan;Cheon, JongHun;Kim, NaRee;Kim, JaeHong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.90.1-90.1
    • /
    • 2010
  • Due to the rapidly diminishing energy sources and higher energy production cost, the interest in dye-sensitized solar cells (DSSCs) has been increasing dramatically in recent years. A typical DSSC is constructed of wide band gap semiconductor electrode such as $TiO_2$ or ZnO that are anchored by light-harvesting sensitizer dyes and surrounded by a liquid electrolyte with a iodide ion/triiodide ion redox couple. DSSCs based on one-dimensional nano-structures, such as ZnO nanorods, have been recently attracting increasing attention due to their excellent electrical conductivity, high optical transmittance, diverse and abundant configurations, direct band gap, absence of toxicity, large exiton binding energy, etc. However, solar-to-electrical conversion performances of DSSCs composed of ZnO n-type photo electrode compared with that of $TiO_2$ are not satisfactory. An important reason for the low photovoltaic performance is the dissolution of $Zn^{2+}$ by the adsorption of acidic dye followed by the formation of agglomerates with dye molecules which could block the I-diffusion pathway into the dye molecule on the ZnO surface. In this paper, we prepared the DSSC with the ZnO electrode using the chemical bath deposition (CBD) method under low temperature condition (< $100^{\circ}C$). It was demonstrated that the ZnO seed layers played an important role on the formation of the ZnO nanostructures using CBD. To achieve truly low-temperature growth of the ZnO nanostructures on the substrates, a two-step method was developed and optimized in the present work. Firstly, ZnO seed layer was prepared on the FTO substrate through the spin-coating method. Secondly, the deposited ZnO seed substrate was immersed into an aqueous solution of 0.25M zinc nitrate hexahydrate and 0.25M hexamethylenetetramine at $90^{\circ}C$ for hydrothermal reaction several times.

  • PDF

Studies on the Nutritional Value of Elderberry (Sam bucus canadensis) Fruits (Elderberry(Sam bucus canadensis) 과실(果實)의 영양가(營養價)에 대(對)하여)

  • Park, Kyo Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.67 no.1
    • /
    • pp.42-49
    • /
    • 1984
  • The elderberry was known to the ancients for its medicinal properties, and in Europe the inner back was formerly administered as a cathartic. The flowers contain a voletile oil, and serve for the distilation of elder-lower water, used in confectionery, perfumes and lotions. The leaves are employed to impart a green colour to fat and oil, and the leaves and bark emit a sickly odour, believed to be repugnant to insect. With its unique flavor and natural food colour, commercial processing companies used the fruit mainly in the making for jam, jelly, pies, juice, and wines. Its vitamin-C content is reported by Andross (1941) as 25-30mg/100g. Harvesting and processing have been mechanized to some extent. However, the cotains with nutritional value has not been reported yet. In the present study the various contains with nutritional value in the fresh elderberry juice is reported by the quantitative analysis. In this study results obtained can be summarized as follows. 1) The fresh elderberry juice contained following mineral elements; calcium 0.012%, magnesium 0.023%, potassium 0.10%, sodium 0.0019%, iron 0.0009%, cobalt 0.0002%, zinc 0.0004%, copper 0.0001%, phosphorus 0.036%, manganese 0.0006%, iodide $1{\mu}g/g$. 2) Five kinds of vitamines were also found ; vitamin-$B_1$ $0.1{\mu}g/g$, vitamin-$B_2$ $0.5{\mu}g/g$, vitamin-C 0.3mg/g, niacin $14{\mu}g/g$, choline chloride 0.3mg/g. 3) Fresh elderberry juice also contains crude protein 1.10%, fat 0.26%, carbohydrate 6.9%, pectin 0.76%, tannin 0.89%, ash 0.80%, water 90.9% and 34.3 cal/100g. 4) The absorption spectrum of the purplishblack color of fresh elderberry juice has a peak between 523-530mm.

  • PDF

Studies on the Pulping Characteristics of Larchwood (Larix leptolepis Gordon) by Alkaline Process with Additives (첨가제(添加劑) 알칼리 법(法)에 의한 일본 잎갈 나무의 펄프화(化) 특성(特性)에 관(關)한 연구(硏究))

  • Lim, Kie-Pyo;Shin, Dong-Sho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.3-30
    • /
    • 1979
  • Larch ($\underline{Larix}$ $\underline{leptolepis}$ GORDON), one of the major afforestation species in Korea in view of its growing stock and rate of growth, is not favored as a raw material for pulp due to its low yield of pulp and difficulties with bleaching arising from the high content of extractives in wood, and the high heartwood ratio and the active phenolics, respectively. The purpose of this study is to investigate the characteristics of firstly pulping with various additives of cellulose protector for the yield of pulp, and secondly bleaching with oxygen for chlotination-alkali extraction of five stage-sequence to reduce chlorine compounds in bleaching effluents. The kraft cooking liquor for five age groups of larchwood was 18 percent active alkali with 25 percent sulfidity and 5 : 1 liquor-to-wood ratio, and each soda liquor for sap-and heart-wood of the 15-year-old larchwood was 18 percent alkali having one of the following cellulose protectors as the additive; magnesium sulfate ($MgSO_4$, 2.5%), zinc sulfate ($ZnSO_4$, 2.5%), aluminium sulfate ($Al_2(SO_4)_3$, 2.5%), potasium iodide (KI, 2.5%), hydroquinone (HQ, 2.5%), anthraquinone (AQ, 0.1%) and ethylene diamine (EDA, 2.5%). Then each anthraquinone-soda liquor for the determination of suitable cooking condition was the active alkali level of 15, 17 and 19 percent with 1.0, 0.5 and 0.1 percent anthraquinone, respectively. The cooking procedure for the pulps was scheduled to heat to 170$^{\circ}C$ in 90 minutes and to cook 90 minutes at the maximum temperature. The anthraquinone-soda pulps from both heartwood and sapwood of 15-year-old larchwood prepared with 0.5 percent anthraquinone and 18 percent active alkali were bleached in a four-stage sequency of OCED. (O: oxygen bleaching, D: chlorine dioxide bleaching and E: alkali extraction). In the first stage oxygen in atmospheric pressure was applied to a 30 percent consistency of pulp with 0.1 percent magnesium oxide (MgO) and 3, 6, and 9 percent sodium hydroxide on oven dry base, and the bleached results were compared pulps bleached under the conventional CEDED (C: chlorination). The results in the study were summarized as follows: 1. The screened yield of larch kraft pulp did not differ from particular ages to age group, but heartwood ratio, basic density, fiber length and water-extractives contents of wood and the tear factor of the pulp increased with increasing the tree age. The total yield of the pulp decreased. 2. The yield of soda pulp with various chemicals for cellulose protection of the 15-year-old larchwood increased slightly more than that of pure soda pulp and was slightly lower than that of kraft pulp. The influence of cellulose protectors was similar to the yield of pulps from both sapwood and heartwood. The effective protectors among seven additives were KI, $MgSO_4$ and AQ, for which the yields of screened pulp was as high as that of kraft pulp. Considering the additive level of protector, the AQ was the most effective in improving the yield and the quality of pulp. 3. When the amount of AQ increased in soda cooking, the yield and the quality of the pulp increased but rejects in total yield increased with decreasing the amount of active alkali from 19 to 15 percent. The best proportion of the AQ seemed to be 0.5 percent at 17 percent active alkali in anthraquinone-soda pulping. 4. On the bleaching of the AQ-soda pulp at 30 percent consistency with oxygen of atomospheric pressure in the first stage of the ODED sequence, the more caustic soda added, the brighter bleached pulp was obtained, but more lignin-selective bleaching reagent in proportion to the oxygen was necessary to maintain the increased yield with the addition of anthraquinone. 5. In conclusion, the suitable pulping condition for larchwood to improve the yield and quality of the chemical pulp to the level for kraft pulp from conventional process seemed to be. A) the selection of young larchwood to prevent decreasing in yield and quality due to the accumulation extractives in old wood, B) the application of 0.5 percent anthraquinone to the conventional soda cooking of 18 percent active alkali, and followed, C) the bleaching of oxygen in atmospheric pressure on high consistency (30%) with 0.1 percent magnesium oxide in the first stage of the ODED sequence to reduce the content of chlorine compounds in effluent.

  • PDF