• Title/Summary/Keyword: Zinc catalyst

Search Result 82, Processing Time 0.023 seconds

In situ Photoacoustic Study of Water Gas Shift Reaction over Magnetite/Chromium Oxide and Copper/Zinc Oxide Catalysts

  • Byun, In-Sik;Choi, Ok-Lim;Choi, Joong-Gill;Lee, Sung-Han
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.11
    • /
    • pp.1513-1518
    • /
    • 2002
  • Kinetic studies on the water-gas shift reaction catalyzed by magnetite/chromium oxide and copper/zinc oxide were carried out by using an in situ photoacoustic spectroscopic technique. The reactions were performed in a closed-circulation reactor system using a differential photoacoustic cell at total pressure of 40 Torr in the temperature range of 100 to $350^{\circ}C.$ The CO2 photoacoustic signal varying with the concentration of CO2 during the catalytic reaction was recorded as a function of time. The time-resolved photoacoustic spectra obtained for the initial reaction stage provided precise data of CO2 formation rate. The apparent activation energies determined from the initial rates were 74.7 kJ/mol for the magnetite/chromium oxide catalyst and 50.9 kJ/mol for the copper/zinc oxide catalyst. To determine the reaction orders, partial pressures of CO(g) and H2O(g) in the reaction mixture were varied at a constant total pressure of 40 Torr with N2 buffer gas. For the magnetite/chromium oxide catalyst, the reaction orders with respect to CO and H2O were determined to be 0.93 and 0.18, respectively. For the copper/zinc oxide catalyst, the reaction orders with respect to CO and H2O were determined to be 0.79 and 0, respectively.

A Study on the Recovery of Zinc ion from Metal-Plating Wastewater by Using Spent Catalyst (酸化鐵 廢觸媒에 의한 도금폐수중 아연이온 回收에 관한 基礎硏究)

  • 이효숙;오영순;이우철
    • Resources Recycling
    • /
    • v.10 no.3
    • /
    • pp.23-28
    • /
    • 2001
  • Zinc ion could be recovered from metal plating wastewater with the spent iron oxide catalyst which was used in the plant of Styrene Monomer(SM) production. The zinc was recovered more than 98.7% at higher than pH 2.0. The saturation magnetization of the spent catalyst is enough high as 59.4 emu/g to apply in the solid-liquid separation after treating the wastewater. The mechanism of zinc recovery with the iron oxide catalyst could be a electro-chemical adsorption at pH 3.0~8.5, and a precipitation as $Zn(OH)_2$ at higher than pH 8.5.

  • PDF

Size Effects of the Catalyst on Characteristics of Zn/Air Batteries (MnO2입자 크기에 따른 아연공기전지의 특성연구)

  • 김지훈;엄승욱;문성인;윤문수;김주용;박정식;박정후
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12
    • /
    • pp.1150-1154
    • /
    • 2003
  • The voltage profile during discharge of the zinc air battery has very flat pattern until reach to end of discharge voltage. But, when zinc air battery is discharged by high current, the discharge voltage and energy becomes low. Therefore, we focused on effects of catalyst size to solve this problems by increasing active sites of oxygen reduction reaction. The size of catalyst was reduced from 27 to l${\mu}{\textrm}{m}$ and we examined average discharge voltage, capacity, energy, resistance and characteristics during GSM pulse discharge of zinc air battery with change of current density. And we also measured porosity of the cathode according to the ASTM. So we have got improvement of average discharge voltage and energy when catalyst was minimized and we have got optimum size of catalyst at 5${\mu}{\textrm}{m}$.

Reduction of Nitroarenes with Hydrazine Monohydrate by Activated Nickel Nitrate-Zinc Catalyst (히드라진과 질산니켈-아연과의 반응에서 얻은 활성화시킨 촉매를 이용한 방향족 니트로화합물의 환원)

  • Yun, Tae Ho;Pyo, Sang Hyeon;Park, Mun Gyu;Han, Byeong Hui
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.5
    • /
    • pp.397-403
    • /
    • 1994
  • An activated catalyst prepared from a mixture of nickel nitrate hexahydrate with zinc in dry ethanol under reflux showed exceptional catalytic activity for the reduction of nitroarenes to the corresponding azoxy compounds exclusively in the presence of hydrazine monohydrate. However, when nickel nitrate hexahydrate was replaced by nickel chloride dihydrate with zinc, only the aminoarenes were formed in high yields. With unactivated catalyst, the reduction reaction from a mixture of nitroarenes, nickel nitrate or chloride, excess zinc and hydrazine monohydrate gave the corresponding azo, azoxy and amino compounds in much lower yields.

  • PDF

Size Effects of the Catalyst on Characteristics of Zn/Air Batteries ($MnO_2$입자 크기에 따른 아연공기전지의 특성연구)

  • Kim, Jee-Hoon;Eom, Seung-Wook;Moon, Seong-In;Yun, Mun-Soo;Kim, Ju-Yong;Yug, Gyeong-Chang;Park, Jeong-Hoo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1129-1131
    • /
    • 2002
  • Zinc Air battery obtain their energy density advantage over the other batteries by utilizing ambient oxygen as the cathode materials, and reusing cathode as recycled form. And specific capacity of zinc powder is as high as 820mAh/g. When Zinc Air battery discharged by low rate current discharge voltage profile has very flat pattern until end of voltage. But, when Zinc Air battery discharged by high rate current discharge voltage and capacity become lower. Therefore, we focused on effects of catalyst size in cathode. So we examined performance of zinc air batteries, average discharge voltage, capacity, energy, resistance. And we also obtained resistance by the GSM pulse discharge. So we have got optimum size of catalyst for Zinc Air battery.

  • PDF

A Study on the Ester Interchange Reaction of Dimethyl Naphthalate with Ethylene Glycol (Dimethyl Naphthalate와 Ethylene Glycol의 에스테르 교환반응에 관한 연구)

  • Sho, Soon-Yong;Cheong, Seong-Ihl
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.25-32
    • /
    • 2001
  • The kinetics of ester interchange reaction of dimethyl naphthalate(DMN) with ethylene glycol(EG) has been studied in the range of 180-200 $^{\circ}C$ using zinc and manganese catalysts. The reaction was performed in a semibatch reactor under nonisothermal condition and the degree of reaction was calculated from experimental data of methanol removal rate and reaction temperature. As a reaction model, both the functional group model and the molecular species model were applied and analysed. In case of zinc catalyst, the ratio of reaction rate of methyl hydroxyethyl naphthalate(MHEN) with EG on that of DMN with EG is about 1.4, whereas in case of manganese catalyst the ratio is about 4.3, which implies that the reaction rate is quite dependent on the type of catalyst. In case of zinc catalyst, the reaction order of catalyst concentration on either DMN or MHEN and EG is less than 1, whereas in case of manganese catalyst, the reaction order is larger than 1. The activation energy for zinc and manganese catalyst, irrespective of the type of molecular species, e.g., DMN and MHEN, were found to be 25000 and 28750 cal/mol, respectively. As a result of comparing two reaction model, the molecular species model fits well for the experimental data.

  • PDF

Synthesis and Electrochemical Evaluation of La1-xSrxCoO3 Cathode Material for Zinc Air Secondary Batteries Application (아연공기이차전지용 La1-xSrxCoO3 양극촉매의 제조 및 이를 적용한 양극의 전기화학적 특성연구)

  • Eom, Seung-Wook;Sun, Yang-Kook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.5
    • /
    • pp.447-452
    • /
    • 2008
  • We synthesized nano-sized $La_{1-x}Sr_xCoO_3$ ($x=0.1{\sim}0.4$) cathode catalyst for the zinc air secondary batteries by citrate method, And we measured the cathode's electrochemical characteristics according to content of strontium compose the cathode catalyst. We controlled the pH of precursor solution by 10 in the process of manufacturing the precursor, We heat treated the prepared precursor at various calcination temperature ($500{\sim}900^{\circ}C$), and examined the optimum calcinations temperature by XRD analysis and electrochemical evaluation. We examined the ORR (oxygen reduction reaction) and OER (oxygen evolution reaction) performance of the prepared $La_{1-x}Sr_xCoO_3$ catalyst powder. When we consider ORR and OER performance simultaneously, $La_{0.7}Sr_{0.3}CoO_3$ catalyst has shown the best performance because of its lowest voltage deference between charge and discharge.

Polymer-supported Zinc Tetrahalide Catalysts for the Coupling Reactions of CO2 and Epoxides

  • Lee, Bo-Ra;Ko, Nan-Hee;Ahn, Byoung-Sung;Cheong, Min-Serk;Kim, Hoon-Sik;Lee, Je-Seung
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.11
    • /
    • pp.2025-2028
    • /
    • 2007
  • Homogeneous zinc tetrahalide complexes, highly active catalysts for the coupling reactions of alkylene oxide and CO2 produce alkylene carbonates, were heterogenized due to their tendency to decompose produced alkylene carbonates during the distillation process. Heterogenization of homogeneous zinc tetrahalide complexes was achieved by polymerizing 1-alkyl-3-vinylimidazolium zinc tetrahalides. These polymerized zinc tetrahalide catalysts displayed similar activities to their corresponding monomeric analogues for the coupling reactions of carbon dioxide with ethylene oxide (EO) or propylene oxide (PO) to produce ethylene carbonate (EC) or propylene carbonate (PC). TGA studies showed that the polymer-supported zinc tetrahalide catalysts are thermally stable up to 320 oC. The catalyst recycle test showed that the supported catalysts could be reused over six times. After removal of the polymer-supported catalyst through a simple filtration, EC was able to be isolated without decomposition.

Development of a Catalyst for the Commercialization of N-phenylmaleimide for Strengthening the Heat Resistance of ABS Resins (ABS 수지의 내열성 강화를 위한 화합물인 N-phenylmaleimide의 상업화를 위한 촉매 개발)

  • Chung, Hyun Ju;Yang, Yun Seung;Kim, Seok Chan
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.645-648
    • /
    • 2017
  • A catalyst for promoting the commercialization of N-phenylamleimide (PMI), a compound used to strengthen the heat resistance of ABS resins and also completely imported, was developed. N-phenylmaleamic acid (PMA) was first quantitatively obtained through the reaction of maleic anhydride and aniline. A catalyst was then investigated for obtaining PMI. Zinc acetate/$Et_3N$, composite catalyst, showed better performance than a single acid catalyst. By using the developed composite catalyst, PMI could be synthesized with the yield and purity of 90% and 99.3%, respectively without any further purification processes.

Biodiesel Production with Zinc Aluminate Catalysts in a High-Pressure-Fixed-Bed-Reactor (Zinc Aluminate 촉매를 이용한 고압연속식 고정층 반응기에서의 바이오디젤 제조)

  • Vu, Khanh Bao;Phan, Thuy Duong Nguyen;Kim, Sunwook;Shin, Eun Woo
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.189-193
    • /
    • 2008
  • In this study, the effect of reaction conditions on the transesterification of soybean oil and methanol was investigated in a high-pressure-fixed-bed-reactor-system with zinc aluminate catalysts. Without catalysts, high-pressure-reaction at $300^{\circ}C$ and 1,200 psi brought 19% yields of methyl esters, which was caused by the approach of reaction condition to supercritical point of methanol. However, except the specific reaction condition, the yields in the reaction with no catalyst were very low below 4.5%. The zinc aluminate was prepared as catalyst by coprecipitation and characterized with $N_2$ gas adsorption/desorption and X-ray diffraction. With catalyst, the effect of the reaction parameters such as temperature, pressure, and molar ratio of reactants on biodiesel production was demonstrated. The higher temperature, pressure, and methanol molar ratio to soybean oil, the more yields of methyl esters. It was proved that among the reaction parameters, the reaction temperature be the most influential variable on methyl ester yields.