• Title/Summary/Keyword: Zeroize function

Search Result 2, Processing Time 0.017 seconds

Implementation of OFP initialization function in IMDC for FA-50 aircraft

  • You, Eun-Kyung;Bae, Chan-Gyu;Kim, Hyeock-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.2
    • /
    • pp.111-118
    • /
    • 2019
  • Recent trends in modern warfare are increasing in importance for air warfare, information warfare, and warfare. The technology of the weapon system software is rapidly developing, and the silent information war to hack it is still going on. Currently, the FA-50 aircraft has a function that can be initialized by a simple switch operation to protect the main military information in the event of an emergency. However, there are limitations in the existing Zeroize function, and this study was carried out to supplement this. First, we compare and analyze the memory structure of aircraft operating in our military, and examined the currently implemented Zeroize function. Second, we reviewed various methods to overcome the limitation of existing Zeroize function. Third, we implement the existing Zeroize function without additional manipulation. In this paper, we propose that the implementation of this feature will enable us to protect our military data more securely and suggest that we should continue to look for ways to enhance security for our technology in the future.

A Security-Enhanced Storing Method for the Voice Data in the Aircraft (항공기에서 보안 강화된 음성 데이터 저장 방식)

  • Cho, Seung Hoon;Suh, Jeong Bae;Moon, Yong Ho
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.4
    • /
    • pp.255-261
    • /
    • 2011
  • In this paper, we propose a security-enhanced storing method for the voice data obtained during the flight. When an emergency occurs during flight, the flight data in the storage device such as DTS or Blackbox can be exposed to antagonist or enemy. Currently, zeroize function is embedded in these devices in order to prevent this situation. However, this could not be operated if the system is malfunctioned or the pilot is wounded in the emergency. In order to solve this problem, the voice data compressed by the ADPCM is encrypted in the proposed method composed of the AES algorithm and a reordering method. The simulation results show that the security for the voice date is further enhanced due to the proposed method.