• Title/Summary/Keyword: Zero-current switching

Search Result 603, Processing Time 0.018 seconds

Design and embodiment of stable system by change of action waveform by pulsemodule special quality of pulse style$CO_2$ laser for obstetrics and gynecology (산부인과용 펄스형 $CO_2$레이저의 펄스모듈 특성과 동작파형 변화에 따른 안정된 시스템의 설계 및 구현)

  • Kim, Whi-Young
    • Journal of the Korea Computer Industry Society
    • /
    • v.8 no.2
    • /
    • pp.97-102
    • /
    • 2007
  • [ $CO_2$ ] laser sees that is most suitable to get this effect through minimum formation damage and advantage that is root enemy of effect that happen in minimum cellular tissue depth of 0.1mm is stable living body organization or internal organs institution. Formation damage by ten can be related in formation's kind or energy density, length of evaporation time. If shorten evaporation time, surroundings cellular thermal damage 200 - because happen within 400um laser beam in rain focus sacred ground surroundings cellular tissue without vitiation me by evaporation Poe of very small floor as is clean steam can . Application is possible to vulva cuticle cousins by a paternal aunt quantity, uterine cancer, cuticle tumor by laser system that $CO_2$ laser gets into standard in obstetrics and gynecology application. Because effect that super pulse output is ten enemies of laser if uniformity one pulse durations are short almost is decreased, most of all pulse module special quality of Pulse style $CO_2$ laser for obstetrics and gynecology mode stabilization by weight very, in this research to get into short pulse duration and higher frequency density, do switching by high frequency in DC-DC Converter output DC's ripple high frequency to be changed, high frequency done current ripple amount of condenser for output filter greatly reduce can . Ripple of output approximately to Zero realization applying possible inductor realization through a special quality experiment do.

  • PDF

A Study on Characteristic Analysis of Single-Stage High Frequency Resonant Inverter Link Type DC-DC Converter (단일 전력단 고주파 공진 인버터 링크형 DC-DC 컨버터의 특성해석에 관한 연구)

  • Won, Jae-Sun;Park, Jae-Wook;Seo, Cheol-Sik;Cho, Gyu-Pan;Jung, Do-Young;Kim, Dong-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.2
    • /
    • pp.16-23
    • /
    • 2006
  • This paper presents a novel single-stage high frequency resonant inverter link type DC-DC converter using zero voltage switching with high power-factor. The proposed topology is integrated half-bridge boost rectifier as power factor corrector(PFC) and half-bridge high frequency resonant converter into a single-stage. The input stage of the half-bridge boost rectifier works in discontinuous conduction mode(DCM) with constant duty cycle and variable switching frequency. So that a boost converter makes the line current follow naturally the sinusoidal line voltage waveform. Simulation results have demonstrated the feasibility of the proposed high frequency resonant converter. Characteristics values based on characteristics analysis through circuit analysis is given as basis data in design procedure. Also, experimental results are presented to verify theoretical discussion. This proposed inverter will be able to be practically used as a power supply in various fields as induction heating applications, fluorescent lamp and DC-DC converter etc.

Semiconductor wafer exhaust moisture displacement unit (반도체 웨이퍼 공정 배기가스 수분제어장치)

  • Chan, Danny;Kim, Jonghae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5541-5549
    • /
    • 2015
  • This paper introduces a safer and more power efficient heater by using induction heating, to apply to the semiconductor wafer fabrication exhaust gas cleaning system. The exhaust gas cleaning system is currently made with filament heater that generates an endothermic reaction of N2 gas for the removal of moisture. Induction theory, through the bases of theoretical optimization and electronic implementation, is applied in the design of the induction heater specifically for the semiconductor wafer exhaust system. The new induction heating design provides a solution to the issues with the current energy inefficient, unreliable, and unsafe design. A robust and calibrated design of the induction heater is used to optimize the energy consumption. Optimization is based on the calibrated ZVS induction circuit design specified by the resonant frequency of the exhaust pipe. The fail-safe energy limiter embedded in the system uses a voltage regulator through the feedback of the MOSFET control, which allows the system performance to operate within the specification of the N2 Heater unit. A specification and performance comparison from current conventional filament heater is made with the calibrated induction heater design for numerical analysis and the proof of a better design.