• 제목/요약/키워드: Zero-Sequence Current

검색결과 107건 처리시간 0.023초

비접지 계통에서 영상전류 위상을 이용한 개선된 보호협조 방안 (The Advanced Protection Coordination Scheme using Phase Angle of Zero-Sequence Current in Ungrounded System)

  • 최영준;임희택;최면송;이승재
    • 전기학회논문지
    • /
    • 제59권1호
    • /
    • pp.19-25
    • /
    • 2010
  • Most faults are single-phase-to-ground fault in ungrounded system. The fault currents of single-phase-to-ground are much smaller than detection thresholds of measurement devices, so detecting single-phase-to-ground faults is difficult and important in ungrounded system. The protection coordination method using SGR(Selective Ground Relay) and OVGR(Overvoltage Ground Relay) is generally used in ungrounded system. But this method only detects fault line and it has the possibility of malfunction. This paper proposed to advanced protection coordination method in ungrounded system. The method just using zero-sequence current can detect fault line, fault phase, fault section at terminal device. The general protection method is used to back up protection. In the case study, the proposed method has been testified in demo system by Matlab/Simulink simulations.

A Modified Selective Ground Relay for Ungrounded Distribution Systems

  • Nam Soon-Ryul;Kang Sang-Hee;Park Jong-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권1호
    • /
    • pp.16-22
    • /
    • 2006
  • Selective ground relays (SGRs) are useful fur distinguishing a faulted feeder from the sound feeders in ungrounded systems. However, they sometimes mis-operate due to human or device errors. Particularly, the reversed polarity of zero-sequence current transducers (ZCTs) is the most frequent cause of mis-operation. This paper presents a modified SGR for reducing the probability of mis-operations caused by the reversed polarity of ZCTs. The modification is achieved by introducing an adaptive time delay, which depends on the magnitude of the zero-sequence current and the phase angle deviation from the reference. The modified SGR was successfully demonstrated on a sample ungrounded system without mis-operation.

비접지 계통에서 영상전류 위상을 이용한 고장표시 생성 알고리즘 (A Fault Indicator Generation Algorithm using Phase Angle of Zero-Sequence Current in Ungrounded System)

  • 임희택;임일형;최면송;이승재
    • 전기학회논문지
    • /
    • 제57권7호
    • /
    • pp.1141-1149
    • /
    • 2008
  • Most faults are single-phase-to-ground fault in ungrounded system. The fault currents of single-phase-to-ground are much smaller than detection thresholds of measurement devices, so detecting single-phase-to-ground faults is difficult and important in ungrounded system. This paper proposed to a FI(Fault Indicator) generation algorithm in ungrounded system. The algorithm just using line-to-line voltage and zero-sequence current detects fault line, fault phase, fault section and FI(Fault Indicator) at terminal device, This paper also proposed to application plan for this algorithm. In the case study, the proposed algorithm has been testified in demo system by Matlab/Simulink simulations.

비접지 배전선로의 고장상 판별 알고리즘 개발 (A Faulted Phase Discrimination Algorithm in Ungrounded Distribution System)

  • 이덕수;임성일;최면송;이승재
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권2호
    • /
    • pp.114-120
    • /
    • 2003
  • According to the use of distribution automation systems, the function to find or to search a fault phase is necessary for automatic switches in a distribution substation. In this paper, two algorithms are developed to fine the fault circuit and the fault phase for the automatic switches in substation with ungrounded power system. One is the fault circuit searching method using the zero sequence voltage at the bus and zero sequence current of circuit current and the other is to find the fault phase using the line voltage and zero sequence current. The developed algorithms are tested in the case study simulations. An ungrounded power system is modeled by EMTP as a case study system. The developed algorithms are tested in the case study simulations and each shows correct results.

영상 전류를 이용한 변류기 개방 판단 알고리즘 (Algorithm for detecting the failure of a current transformer using the zero-sequence current)

  • 강용철;이병은;이현웅;김유다;박준수;이미선;박지연;이보은
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 A
    • /
    • pp.163-164
    • /
    • 2006
  • A current differential relay has been used for transmission line protection. The relay may maloperate in the case of a failure of the secondary circuit of a current transformer (CT) because the differential current is produced. This paper presents an algorithm to detect a failure of a CT using the zero-sequence current. If the magnitude of the zero-sequence current is the same as the magnitude of the current of the other healthy phases, a failure of a CT is detected and then the blocking signal is activated. The proposed algorithm prohibit the maloperation of a differential relay in the case of a CT failure and thus increase the security of the relay.

  • PDF

A Zero Sequence Voltage Injection Method for Cascaded H-bridge D-STATCOM

  • Yarlagadda, Srinivasa Rao;Pathak, Mukesh Kumar
    • Journal of Power Electronics
    • /
    • 제17권4호
    • /
    • pp.1088-1096
    • /
    • 2017
  • Load variations on a distribution line result in voltage fluctuations at the point of common coupling (PCC). In order to keep the magnitude of the PCC voltage constant at its rated value and obtain zero voltage regulation (ZVR), a D-STATCOM is installed for voltage correction. Moreover, the ZVR mode of a D-STATCOM can also be used to balance the source current during unbalanced loading. For medium voltage and high power applications, a D-STATCOM is realized by the cascaded H-bridge topology. In the ZVR mode, the D-STATCOM may draw unbalanced current and in this process is required to handle different phase powers leading to deviations in the cluster voltages. Zero sequence voltage needs to be injected for ZVR mode, which creates circulating power among the phases of the D-STATCOM. The computed zero sequence voltage and the individual DC capacitor balancing controller help the DC cluster voltage follow the reference voltage. The effectiveness of the control scheme is verified by modeling the system in MATLAB/SIMULINK. The obtained simulations are further validated by the experimental results using a dSPACE DS1106 and five-level D-STATCOM experimental set up.

듀얼 인버터 개방 권선형 영구자석 동기 전동기 제어를 위한 PWM 가변 캐리어 생성법 및 영벡터 위치에 따른 전류 리플 분석 (PWM Variable Carrier Generating Method for OEW PMSM with Dual Inverter and Current Ripple Analysis according to Zero Vector Position)

  • 심재훈;최현규;하정익
    • 전력전자학회논문지
    • /
    • 제25권4호
    • /
    • pp.279-285
    • /
    • 2020
  • An open-end winding (OEW) permanent magnet synchronous motor with dual inverters can synthesize large voltages for a motor with the same DC link voltage. This ability has the advantage of reducing the use of DC/DC boost converters or high voltage batteries. However, zero-sequence voltage (ZSV), which is caused by the difference in the combined voltage between the primary and secondary inverters, can generate a zero-sequence current (ZSC) that increases system losses. Among the methods for eliminating this phenomenon, combining voltage vector eliminated ZSV cannot be accomplished by the conventional Pulse Width Modulation(PWM) method. In this study, a PWM carrier generation method using functionalization to generate a switching pattern to suppress ZSC is proposed and applied to analyze the control influence of the center-zero vector in the switching sequence about the current ripple.

3상 계통에서 전류/전압과 순시전력간의 맵핑이론 (The Mapping Theory between Current/Voltage and Instantaneous Powers in Three-phase Systems)

  • 김효성;최재호
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1997년도 전력전자학술대회 논문집
    • /
    • pp.228-232
    • /
    • 1997
  • The relation between instantaneous active/reactive powers and currents is defined by voltage mapping matrix in three-phase four-wire systems. Control strategies for an active filter without energy storage components are proposed on the basis of mapping matrices. It can compensate for the zero-sequence current, irrespectively of whether or not a zero-sequence voltage exists in a three-phase four-wire system.

  • PDF

병렬 3레벨 AC/DC 전력변환 시스템의 영상분 순환전류 억제 (Suppression of Circulating Current in Parallel Operation of Three-Level AC/DC Converters)

  • 손영광;지승준;이영기;설승기
    • 전력전자학회논문지
    • /
    • 제21권4호
    • /
    • pp.312-319
    • /
    • 2016
  • Zero-sequence Circulating Current (ZSCC) flows inevitably in parallel converters that share common DC and AC sources. The ZSCC commonly flowing in all converters increases loss and decreases the overall capacity of parallel converters. This paper proposes a simple and effective ZSCC suppression method based on the Space Vector PWM (SVPWM) with the ZSCC controller. The zero-sequence voltage for the proposed SVPWM is calculated on the basis of the grid voltage and not on the phase voltage references. The limit of the linear modulation region of the converters with the proposed method is analyzed and compared with other methods, thereby proving that the limit of the region can be extended with the proposed method. The effectiveness of the proposed method has been verified through the experimental setup comprising four parallel three-level converters. The ZSCC is confirmed to be well suppressed, and the linear modulation region is extended simultaneously with the proposed method. Moreover, the proposed control method does not require any communication between the converters to suppress the ZSCC unlike other conventional methods.

대칭분 전압 단위 벡터를 이용한 송전선로 보호용 고장상 선택 알고리즘 (Fault Phase Selection Algorithm using Unit Vector of Sequence Voltages for Transmission Line Protection)

  • 이명수;이재규;김수남;유석구
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제51권9호
    • /
    • pp.460-466
    • /
    • 2002
  • A reliable fault phase selection algorithm plays a very important role in transmission line protection, Particularly in Extra High Voltage (EHV) networks. The conventional fault phase selection algorithm used the phase difference between positive and negative sequence current excluding load current. But, it is difficult to pick out only fault current since we can not know when a fault occurs and select the fault phase in weak-infeed conditions that dominate zero-sequence current in phase current. The proposed algorithm can select the accurately fault phase using the sum of unit vectors which are calculated by positive-sequence voltage and negative-sequence voltage.