• Title/Summary/Keyword: Zero-Inflated Poisson Model

Search Result 43, Processing Time 0.018 seconds

Analysis of Elderly Drivers' Accident Models Considering Operations and Physical Characteristics (고령운전자 운전 및 신체특성을 반영한 교통사고 분석 연구)

  • Lim, Sam Jin;Park, Jun Tae;Kim, Young Il;Kim, Tae Ho
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.6
    • /
    • pp.37-46
    • /
    • 2012
  • The number of traffic accidents caused by elderly drivers over the age of 65 has surged over the past ten years from 37,000 to 274,000 cases. The proportion of elderly drivers' accidents has jumped 3.1 times from 1.2% to 3.7% out of all traffic accidents, and traffic safety organizations are pursuing diverse measures to address the situation. Above all, connecting safety measures with an in-depth research on behavioral and physical characteristics of elderly drivers will prove vital. This study conducted an empirical research linking the driving characteristics and traffic accidents by elderly drivers based on the Driving Aptitude Test items and traffic accident data, which enabled the measurement of behavioral characteristics of elderly drivers. In developing the Influence Model, we applied the zero-inflated Poisson (ZIP) regression model and selected an accident prediction model based on the Bayesian Influence in regards to the ZIP regression model and the zero-inflated negative binomial (ZINB) regression model. According to the results of the AAE analysis, the ZIP regression model was more appropriate and it was found that three variables? prediction of velocity, diversion, and cognitive ability? had a relation of influence with traffic accidents caused by elderly drivers.

Marginal Effect Analysis of Travel Behavior by Count Data Model (가산자료모형을 기초로 한 통행행태의 한계효과분석)

  • 장태연
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.3
    • /
    • pp.15-22
    • /
    • 2003
  • In general, the linear regression model has been used to estimate trip generation in the travel demand forecasting procedure. However, the model suffers from several methodological limitations. First, trips as a dependent variable with non-negative integer show discrete distribution but the model assumes that the dependent variable is continuously distributed between -$\infty$ and +$\infty$. Second, the model may produce negative estimates. Third, even if estimated trips are within the valid range, the model offers only forecasted trips without discrete probability distribution of them. To overcome these limitations, a poisson model with a assumption of equidispersion has frequently been used to analyze count data such as trip frequencies. However, if the variance of data is greater than the mean. the poisson model tends to underestimate errors, resulting in unreliable estimates. Using overdispersion test, this study proved that the poisson model is not appropriate and by using Vuong test, zero inflated negative binomial model is optimal. Model reliability was checked by likelihood test and the accuracy of model by Theil inequality coefficient as well. Finally, marginal effect of the change of socio-demographic characteristics of households on trips was analyzed.

The Effects of Sentiment and Readability on Useful Votes for Customer Reviews with Count Type Review Usefulness Index (온라인 리뷰의 감성과 독해 용이성이 리뷰 유용성에 미치는 영향: 가산형 리뷰 유용성 정보 활용)

  • Cruz, Ruth Angelie;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.43-61
    • /
    • 2016
  • Customer reviews help potential customers make purchasing decisions. However, the prevalence of reviews on websites push the customer to sift through them and change the focus from a mere search to identifying which of the available reviews are valuable and useful for the purchasing decision at hand. To identify useful reviews, websites have developed different mechanisms to give customers options when evaluating existing reviews. Websites allow users to rate the usefulness of a customer review as helpful or not. Amazon.com uses a ratio-type helpfulness, while Yelp.com uses a count-type usefulness index. This usefulness index provides helpful reviews to future potential purchasers. This study investigated the effects of sentiment and readability on useful votes for customer reviews. Similar studies on the relationship between sentiment and readability have focused on the ratio-type usefulness index utilized by websites such as Amazon.com. In this study, Yelp.com's count-type usefulness index for restaurant reviews was used to investigate the relationship between sentiment/readability and usefulness votes. Yelp.com's online customer reviews for stores in the beverage and food categories were used for the analysis. In total, 170,294 reviews containing information on a store's reputation and popularity were used. The control variables were the review length, store reputation, and popularity; the independent variables were the sentiment and readability, while the dependent variable was the number of helpful votes. The review rating is the moderating variable for the review sentiment and readability. The length is the number of characters in a review. The popularity is the number of reviews for a store, and the reputation is the general average rating of all reviews for a store. The readability of a review was calculated with the Coleman-Liau index. The sentiment is a positivity score for the review as calculated by SentiWordNet. The review rating is a preference score selected from 1 to 5 (stars) by the review author. The dependent variable (i.e., usefulness votes) used in this study is a count variable. Therefore, the Poisson regression model, which is commonly used to account for the discrete and nonnegative nature of count data, was applied in the analyses. The increase in helpful votes was assumed to follow a Poisson distribution. Because the Poisson model assumes an equal mean and variance and the data were over-dispersed, a negative binomial distribution model that allows for over-dispersion of the count variable was used for the estimation. Zero-inflated negative binomial regression was used to model count variables with excessive zeros and over-dispersed count outcome variables. With this model, the excess zeros were assumed to be generated through a separate process from the count values and therefore should be modeled as independently as possible. The results showed that positive sentiment had a negative effect on gaining useful votes for positive reviews but no significant effect on negative reviews. Poor readability had a negative effect on gaining useful votes and was not moderated by the review star ratings. These findings yield considerable managerial implications. The results are helpful for online websites when analyzing their review guidelines and identifying useful reviews for their business. Based on this study, positive reviews are not necessarily helpful; therefore, restaurants should consider which type of positive review is helpful for their business. Second, this study is beneficial for businesses and website designers in creating review mechanisms to know which type of reviews to highlight on their websites and which type of reviews can be beneficial to the business. Moreover, this study highlights the review systems employed by websites to allow their customers to post rating reviews.