• Title/Summary/Keyword: Zero speed

Search Result 546, Processing Time 0.031 seconds

Control For Minimizing Settling Time in High-Density Disk Drives (고밀도 디스크 드라이브의 안착시간 최소화 제어)

  • 강창익;김창환;임충혁
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.1
    • /
    • pp.10-21
    • /
    • 2003
  • During seek operation in disk drives, the recording head is moved toward desired track by seek servo controller and then is settled onto the center of the desired track by settling servo controller. If the head speed at the start of settling servo control is not slow, it may produce overshoot relative to the center of track and thus extend the settling time. The degradation in settling performance will be more severe as the track width becomes smaller for higher density of data storage. We design a new settling servo controller for minimizing settling time based on the pole-zero cancellation. In order to cancel slow poles in settling response, we apply discrete pulse signals to the system in addition to the state feedback control. For exact pole-zero cancellation, we consider the dynamics of power amplifier used for actuator current regulation and the effects of delay in control action. In addition, we present system parameter identification algerian for the robustness of our controller to system parameter variation. In order to demonstrate the practical use of our controller, we present experimental results obtained by using a commercially available disk drive.

Design of a 2.4-GHz Fully Differential Zero-IF CMOS Receiver Employing a Novel Hybrid Balun for Wireless Sensor Network

  • Chang, Shin-Il;Park, Ju-Bong;Won, Kwang-Ho;Shin, Hyun-Chol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.2
    • /
    • pp.143-149
    • /
    • 2008
  • A novel compact model for a five-port transformer balun is proposed for the efficient circuit design of hybrid balun. Compared to the conventional model, the proposed model provides much faster computation time and more reasonable values for the extracted parameters. The hybrid balun, realized in $0.18\;{\mu}m$ CMOS, achieves 2.8 dB higher gain and 1.9 dB lower noise figure than its passive counterpart only at a current consumption of 0.67 mA from 1.2 V supply. By employing the hybrid balun, a differential zero-IF receiver is designed in $0.18\;{\mu}m$ CMOS for IEEE 802.15.4 ZigBee applications. It is composed of a differential cascode LNA, passive mixers, and active RC filters. Comparative investigations on the three receiver designs, each employing the hybrid balun, a simple transformer balun, and an ideal balun, clearly demonstrate the advantages of the hybrid balun in fully differential CMOS RF receivers. The simulated results of the receiver with the hybrid balun show 33 dB of conversion gain, 4.2 dB of noise figure with 20 kHz of 1/f noise corner frequency, and -17.5 dBm of IIP3 at a current consumption of 5 mA from 1.8 V supply.

Open-Loop Pipeline ADC Design Techniques for High Speed & Low Power Consumption (고속 저전력 동작을 위한 개방형 파이프라인 ADC 설계 기법)

  • Kim Shinhoo;Kim Yunjeong;Youn Jaeyoun;Lim Shin-ll;Kang Sung-Mo;Kim Suki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.1A
    • /
    • pp.104-112
    • /
    • 2005
  • Some design techniques for high speed and low power pipelined 8-bit ADC are described. To perform high-speed operation with relatively low power consumption, open loop architecture is adopted, while closed loop architecture (with MDAC) is used in conventional pipeline ADC. A distributed track and hold amplifier and a cascading structure are also adopted to increase the sampling rate. To reduce the power consumption and the die area, the number of amplifiers in each stage are optimized and reduced with proposed zero-crossing point generation method. At 500-MHz sampling rate, simulation results show that the power consumption is 210mW including digital logic with 1.8V power supply. And the targeted ADC achieves ENOB of about 8-bit with input frequency up to 200-MHz and input range of 1.2Vpp (Differential). The ADC is designed using a $0.18{\mu}m$ 6-Metal 1-Poly CMOS process and occupies an area of $900{\mu}m{\times}500{\mu}m$

Optimization of a PI Controller Design for an Oil Cooler System with a Variable Rotating Speed Compressor (가변속 압축기를 갖는 오일쿨러의 최적 PI 제어기 설계)

  • Kwon, Taeeun;Jeong, Taeyoung;Jeong, Seokkwon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.12
    • /
    • pp.502-508
    • /
    • 2016
  • An optimized PI controller design method is presented to promote the control performance of an oil cooler system for high precision machine tools. First, a transfer function model of the oil cooler system with a variable rotating speed compressor was obtained by the perturbation method as the first order system with a negligible dead time. Then, the closed-loop control system was described as the second order system with a zero. Its dynamic behaviors are mostly governed by characteristic parameters, the damping ratio, and the natural frequency which is incorporated in PI gains. Next, an optimum integral of the time-weighted absolute error (ITAE) criterion was applied to the second order system. The characteristic parameters can be determined by the given design specifications, percent overshoots and settling times and comparisons with the ITAE criterion. Hence, the PI gains were plainly identified in a deterministic way. Finally, the PI gains were fine-tuned to obtain desirable dynamics in real systems, considering the zero effect and parameter variations. The validity of the proposed method was proven by computer simulations and real experiments for selected cases.

Development of a distributed high-speed data acquisition and monitoring system based on a special data packet format for HUST RF negative ion source

  • Li, Dong;Yin, Ling;Wang, Sai;Zuo, Chen;Chen, Dezhi
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3587-3594
    • /
    • 2022
  • A distributed high-speed data acquisition and monitoring system for the RF negative ion source at Huazhong University of Science and Technology (HUST) is developed, which consists of data acquisition, data forwarding and data processing. Firstly, the data acquisition modules sample physical signals at high speed and upload the sampling data with corresponding absolute-time labels over UDP, which builds the time correlation among different signals. And a special data packet format is proposed for the data upload, which is convenient for packing or parsing a fixed-length packet, especially when the span of the time labels in a packet crosses an absolute second. The data forwarding modules then receive the UDP messages and distribute their data packets to the real-time display module and the data storage modules by PUB/SUB-pattern message queue of ZeroMQ. As for the data storage, a scheme combining the file server and MySQL database is adopted to increase the storage rate and facilitate the data query. The test results show that the loss rate of the data packets is within the range of 0-5% and the storage rate is higher than 20 Mbps, both acceptable for the HUST RF negative ion source.

Numerical Analysis of 3-D Turbulent Flows Around a High Speed Train Including Cross-Wind Effects (측풍영향을 고려한 고속전철 주위의 3차원 난류유동 해석)

  • Jung Y. R.;Park W. G.;Ha S. D.
    • Journal of computational fluids engineering
    • /
    • v.1 no.1
    • /
    • pp.71-80
    • /
    • 1996
  • An iterative time marching procedure for solving incompressible turbulent flow has been applied to the flows around a high speed train including cross-wind effects. This procedure solves three-dimensional unsteady incompressible Reynolds-averaged Navier-Stokes equations on a non-orthogonal curvilinear coordinate system using first-order accurate schemes for the time derivatives and third/second-order accurate schemes for the spatial derivatives. Turbulent flows have been modeled by Baldwin-Lomax turbulent model. To validate present procedure, the flow around a high speed train at zero yaw angle was simulated and compared with experimental data. Generally good agreement with experiments was achieved. The flow fields around the high speed train at 9.2°, 16.7°, and 45° of yaw angle were also simulated.

  • PDF

Microstructure and Mechanical Properties of Cu-Ni-Si Alloy Deformed by Differential Speed Rolling (이속압연에 의해 가공된 Cu-Ni-Si 합금의 미세 조직 및 기계적 성질)

  • Lee, Seong-Hee;Han, Seung Zeon
    • Korean Journal of Materials Research
    • /
    • v.26 no.1
    • /
    • pp.8-12
    • /
    • 2016
  • Effects of conventional rolling(CR) and differential speed rolling(DSR) on the microstructure and mechanical properties of Cu-Ni-Si alloy were investigated in detail. The copper alloy with thickness of 3 mm was rolled to 50 % reduction at ambient temperature without lubricant with a differential speed ratio of 2:1. The conventional rolling in which the rolling speed of upper and lower rolls is identical was performed under identical rolling conditions. The shear strain introduced by the CR showed positive values at positions of upper roll side and negative values at positions of lower roll side. However, it showed zero or positive values at all positions for the samples rolled by the DSR. The microstrucure and texture development of the as-rolled copper alloy did not show any significant difference between CR and DSR. The tensile strength of the DSR processed specimen was larger than that of the CR processed specimen. The effects of rolling methods on the microstructure and mechanical properties of the as-rolled copper alloy are discussed in terms of the shear strain.

Optimization of Shift Control to Improve Driving Efficiency of Battery Electric Vehicles with Two-speed Transmission (2단 변속기 적용 전기차의 구동 효율 향상을 위한 변속 제어 최적화)

  • Taekho Chung;Younghee Kim
    • Journal of ILASS-Korea
    • /
    • v.28 no.2
    • /
    • pp.62-67
    • /
    • 2023
  • Recently, the global automobile industry is aiming for a transition from internal combustion locomotives to zero-emission vehicles. Electric vehicles powered by battery energy can operate at peak performance and improve fuel economy by applying multiple motors or multi-speed transmissions. In order to design a two-speed transmission, it is necessary to evaluate and analyze the application system and performance of electric vehicles. In this study, control performance optimization of a twostage battery electric vehicle equipped with an AMT-based automatic transmission was performed and performance according to control pattern changes was analyzed. In order to improve the operating efficiency of the motor, the shift control that sets the optimal operating point according to the vehicle speed and required torque was derived from the motor efficiency map. The performance of battery energy consumption and transmission loss energy according to the hysteresis interval was analyzed and optimized. The hysteresis interval applied to the optimal shift map acted as a factor in reducing the frequency and loss of shifts. It has been shown that keeping the hysteresis interval at about 4 km/h can reduce energy consumption while reducing the number of shifts.

A Switching Technique for Common Mode Voltage Reduction of 2-Level Inverter

  • Yun Hwan-Kyun;Kim Lee-Hun;Kim Jun-Ho;Won Chung-Yuen;Choi Gi-Su;Bae Joung-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.438-442
    • /
    • 2001
  • Much attention has given to EMI effects created by variable speed ac drive system. This paper focuses on the switching technique to mitigate common mode voltage. Zero switching states of inverter control invoke large common mode voltage. Using inversed carrier wave, zero switching states are removed. In addition, proposed technique is easy to apply to existing 2-level inverter design. And common mode mitigation technique for sinusoidal PWM is also presented. Proposed switching technique is implemented with a 2.2kw 1735rpm induction motor.

  • PDF

Chromatic Dispersion Monitoring of CSRZ Signal for Optimum Compensation Using Extracted Clock-Frequency Component

  • Kim, Sung-Man;Park, Jai-Young
    • ETRI Journal
    • /
    • v.30 no.3
    • /
    • pp.461-468
    • /
    • 2008
  • This paper presents a chromatic dispersion monitoring technique using a clock-frequency component for carrier-suppressed return-to-zero (CSRZ) signal. The clock-frequency component is extracted by a clock-extraction (CE) process. To discover which CE methods are most efficient for dispersion monitoring, we evaluate the monitoring performance of each extracted clock signal. We also evaluate the monitoring ability to detect the optimum amount of dispersion compensation when optical nonlinearity exists, since it is more important in nonlinear transmission systems. We demonstrate efficient CE methods of CSRZ signal to monitor chromatic dispersion for optimum compensation in high-speed optical communication systems.

  • PDF