• 제목/요약/키워드: Zero moment point

검색결과 122건 처리시간 0.03초

Real-time Trajectory Adaptation for a Biped Robot with Varying Load

  • Seok, Jin-Wook;Won, Sang-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1934-1937
    • /
    • 2005
  • This paper proposes suitable gait generation for dynamic walking of biped robot with varying load in real time. Author proposes the relationship between ZMP(Zero Moment Point) and measurement from FSR(Force Sensing Register). Simplifying this relationship, it is possible to reduce the computational time and control the biped robot in real time. If the weight of the biped robot varies in order to move some object, then joint trajectories of the the biped robot must be changed. When some object is loaded on the biped robot in it's home position, FSRs can measure the variation of weight. Evaluating the relations between varying load and stable gait of the biped robot, it can walk adaptively. This relation enables the biped robot to walk properly with varying load. The simulation is also represented in this paper which shows proposed relationships.

  • PDF

학습기반 뉴로-퍼지 시스템을 이용한 휴머노이드 로봇의 지능보행 모델링 (Intelligent Walking Modeling of Humanoid Robot Using Learning Based Neuro-Fuzzy System)

  • 박귀태;김동원
    • 제어로봇시스템학회논문지
    • /
    • 제13권4호
    • /
    • pp.358-364
    • /
    • 2007
  • Intelligent walking modeling of humanoid robot using learning based neuro-fuzzy system is presented in this paper. Walking pattern, trajectory of the zero moment point (ZMP) in a humanoid robot is used as an important criterion for the balance of the walking robots but its complex dynamics makes robot control difficult. In addition, it is difficult to generate stable and natural walking motion for a robot. To handle these difficulties and explain empirical laws of the humanoid robot, we are modeling practical humanoid robot using neuro-fuzzy system based on the two types of natural motions which are walking trajectories on a t1at floor and on an ascent. Learning based neuro-fuzzy system employed has good learning capability and computational performance. The results from neuro-fuzzy system are compared with previous approach.

이족 보행 로봇의 초기 자세에 따른 걸음새 해석에 관한 연구 (A Study on the Gait Analysis for Initial Posture of a Biped Robot)

  • 노경곤;정진걸
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.301-303
    • /
    • 2001
  • This paper deals with the biped robot gait on changing the initial postures. Gait of a biped robot depends on the constraints of mechanical kinematics and initial posture. Also biped robot's dynamic walking stability is investigated by ZMP(Zero Moment Point). The path trajectory. with the knee joint bent like a human, is generated and applied with the above considerations. To decrease trajectory tracking error, in this paper, a new initial posture similar to bird's case is proposed and realized with the real robot.

  • PDF

신경망을 이용한 2족 보행로봇의 자세 제어 (Improvement of Stability of Biped Walking Robot Using Neural Network)

  • 김낙현;이현구;김동원;박귀태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 D
    • /
    • pp.2406-2410
    • /
    • 2004
  • 2족 보행로봇은 그 구조적인 특성상 인간 생활환경에 적용이 용이하며 바퀴형 로봇이 이동하기 어려운 환경에서도 이동이 가능하다. 그러나 2족 보행로봇은 높은 자유도와 직렬형 링크 구조로 인해 안정도 해석과 제어가 어려운 점이 있으며 이는 로봇을 제작하는데 있어 난점으로 작용한다. 본 연구에서는 로봇의 발바닥에 압력센서를 설치하여 ZMP(Zero moment point)를 측정하여 안정도를 판별하고 신경망 이론을 이용하여 보행 안정도를 개선하도록 로봇의 자세를 제어하였다.

  • PDF

이족 보행로봇의 3차원 모의실험기 개발 (Development of 3-Dimensional Simulator for a Biped Robot)

  • 노경곤;김진걸;허욱열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 D
    • /
    • pp.2438-2440
    • /
    • 2004
  • This study is concerned with development of 3-Dimensional simulator of a biped robot that has a prismatic balancing weight or a revolute balancing weight. The dynamic stability equation of a biped robot which have a prismatic balancing weight is conditional linear but a walking robot's stability equation with a revolute balancing weight is nonlinear. To get a stable gait of a biped robot, stabilization equations with ZMP (Zero Moment Point) are modeled as non-homogeneous second order differential equations for each balancing weight type. A trajectory of balancing weight can be directly calculated with the FDM (Finite Difference Method) solution of the linearized differential equation. In this paper, the 3-Dimensional graphic simulator is programmed to get and calculate the desired ZMP and the actual ZMP. Walking of 4 steps was simulated and verified. This balancing system will be applied to a biped humanoid robot, which consist Begs and upper body, at future work.

  • PDF

The Comparison of Postural Stability Analysis of Biped Robot IWR-III

  • Kim, S.B.;Park, S.H.;Kim, J.T.;Kim, Jin.G.;Lee, B.H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.162.2-162
    • /
    • 2001
  • This paper presents the stability analysis of a biped robot IWR-III. We use a foot-rotation indicator(FRI) concept to reveal the degree of stability. The foot rotation can be a barometer of postural instability, which should be carefully treated in implementing a dynamically stable walk and avoided altogether in performing a statically stable walk. The conventionally mentioned zero moment point(ZMP) criterion may not be sufficient to express the stability of a biped robot. ZMP equation needs an assumption that the supporting foot is fixed firmly to the ground during the walking. Therefore, applying the FRI concept is more desirable when a biped robot is falling down ...

  • PDF

DRC 휴보의 4족 보행 제어 (Quadruped Walking Control of DRC-HUBO)

  • 김정엽
    • 한국생산제조학회지
    • /
    • 제24권5호
    • /
    • pp.548-552
    • /
    • 2015
  • In this paper, we describe the quadruped walking-control algorithm of the complete full-size humanoid DARPA Robotics Challenge-HUBO (DRC-HUBO) robot. Although DRC-HUBO is a biped robot, we require a quadruped walking function using two legs and two arms to overcome uneven terrains in the DRC. We design a wave-type quadruped walking pattern as a feedforward control using several walking parameters, and we design zero moment point (ZMP) controllers to maintain stable walking using an inverted pendulum model and an observed-state feedback control scheme. In particular, we propose a switching algorithm for ZMP controllers using supporting value and weighting factors in order to maintain the ZMP control performance during foot switching. Finally, we verify the proposed algorithm by performing quadruped walking experiments using DRC-HUBO.

로봇발전과 기구학의 역할 (The Role of Kinematics in Robot Development)

  • 염영일
    • 제어로봇시스템학회논문지
    • /
    • 제20권3호
    • /
    • pp.333-344
    • /
    • 2014
  • This is the survey paper on the role of kinematics in robot development. The robot is considered as a form of mechanical systems which includes closed-chain loop system, open-chain loop system and closed and open switching system. To analyze these systems, kinematic notations has been developed in kinematics of mechanical theory since 1955 and has been applied in robotics. Several kinematic notations including Denavit-Hartenberg notations have been reviewed. The status of development of the spherical motor which has a great impact on the future robot advancement has reviewed, and research activity on a spherical motor and its application to 3-D spatial mechanisms at UNIST is introduced. For the open and closed switching mechanical systems, the bipedal robots' walking theories using Zero Moment Point are reviewed. And current status regarding bipedal robots based on newly developed passive dynamic walking theory is reviewed with the research activity at UNIST on this subject.

이족보행로봇 IWR의 기구학적 모델링과 역동역학 해석 (Kinematic Modeling and Inverse Dynamic Analysis of the IWR Biped Walking Robot)

  • 김진석;박인규;김진걸
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.561-565
    • /
    • 2000
  • This paper deals with dynamic walking and inverse dynamic analysis of the IWR biped walking robot. The system has nine bodies of the multibody dynamics. and all of the .joints of them are made up of the revolute joints at first. The problem of redundant constraint in double support phase is solved by changing the type of the joints considering kinematic relation. To make sure of its dynamic walking, the movement of balancing weight is determined by which satisfies not only the condition of ZMP by applying the principle of D'Alembert but also the contact condition of the ground. The modeling of IWR and dynamic walking are realized using DADS.

  • PDF

이족보행로봇의 궤적 추종 오차 감소를 위한 걸음새 분석 (Walking Pattern Analysis for Reducing Trajectory Tracking Error in a Biped Robot)

  • 노경곤;공정식;김진걸
    • 제어로봇시스템학회논문지
    • /
    • 제8권10호
    • /
    • pp.890-897
    • /
    • 2002
  • This paper deals with the reduction of trajectory tracking error by changing the initial postures of a biped robot. Gait of a biped robot depends on the constraints of mechanical kinematics and the initial states including the posture. Also the dynamic walking stability in a biped robot system is analyzed by zero moment point(ZMP) among the stabilization indices. Path trajectory, in which knee joint is bent forward like human's cases, is applied to most cases considered with above conditions. A new initial posture, which is similar to bird's gait, is proposed to decrease trajectory tracking error and it is verified through real experimental results.