• Title/Summary/Keyword: Zero magnetostriction

Search Result 15, Processing Time 0.023 seconds

THE EFFECTS OF Sm ON THE MICROSTRUCTURE AND MAGNETOSTRICTION OF Fe-Co ALLOYS

  • Shima, Toshiyuki;Aoyagi, Eiji;Fujimori, Hiroyasu
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.726-729
    • /
    • 1995
  • We investigated the effects of Sm on the microstructure and magnetic properties of Fe-Co Alloy films prepared by a DC triode sputtering. The magnetostriction was found to be changed with the Sm content from positive to negative values, taking a zero magnetostriction was at about 3 at% Sm. The Sm content dependence of magnetostriction was explained by the formation of Sm enriched amorphous phase surrounding the main bcc (Fe,Co) crystalline phase, which was observed by a high resolution transmission electron microscopy.

  • PDF

GIANT MAGNETORESISTANCE AND LOW MAGNETOSTRICTION IN DISCONTINUOUS NiFe/Ag MULTILAYER THIN FILMS

  • Kim, Young-Keun
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.3
    • /
    • pp.189-193
    • /
    • 1996
  • Magnetoresistance field sensitivity and magnetostriction were measured as a function of annealing temperature for NiFe/Ag multilayer systems displaying giant magnetoresistance. Key multilayer configurations such as number of NiFe/Ag bilayers and Ag spacer thickness were varied. A high giant magnetoresistance ratio up to 5% with zero magnetostriction and high magnetoresistance field sensitivity was possible to achieve simultaneously with optimal sample geometry and annealing condition.

  • PDF

Frequency Dependance of Inductance of FeCoB Amorphous Magnetic Films (FeCoB계 아몰퍼스 자성박막의 인덕턴스의 주파수 의존성)

  • 신용진;소대화;김현욱;서강수;임재근
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.5
    • /
    • pp.413-417
    • /
    • 1998
  • In this paper, we investigate frequency dependance of inductance of FeCoB amorphous magnetic films. $(Fe_{1-x}Co_x)_{79}Si_2B_{19}$ was used as the basic composition of amorphous magnetic film having near zero magnetostriction. The amorphous magnetic films were fabricated with x=0.94 and x=0.95 by using sputtering method at high frequency. The films were anneald under non-magnetic field and near crystallization temperatures(30min at $280^{\circ}C$, 30min and 1hr at $400^{\circ}C$, respectively). As the results of the experiments with the fabricated films, the lowest coercive force was 0.084[Oe] at 400[W] of the input power and the crystallization temperature was $360^{\circ}C$ . In the case 30min at 40$0^{\circ}C$ the inductance value in the low frequency with x=0.95 was higher by 488% than that with x=0.94. The quality factor Q was below 0.7 for all samples. We obtained the highest quality value at 400[KHz] with 30min at $280^{\circ}C$ and x=0.94. The value was about 0.62. Also, the quality factor value was about 0.35 at 1[MHz] with 30min at $280^{\circ}C$ and x=0.95.

  • PDF

Effect of Annealing on the Mechanical properties of Fe-6.5wt% Si Alloy (Fe-6.5wt% Si 합금의 역학 특성에 미치는 어닐링 효과)

  • Yun, Yeong-Gi;Yun, Hui-Seok;Hong, Seong-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2909-2916
    • /
    • 2000
  • 6.5wt% Si steel is widely known as an excellent magnetic material because its magnetostriction is nearly zero. The AX magnetic properties as magnetostriction of 6.5% Si steel were evaluated and compared with those of conventional 3% Si steel sheet. In this paper, the fracture behavior of the poly crystals and single crystals of Fe-6.5wt%Si alloy has been observed. Single crystals were prepared by Floating Zone(FZ) method, which melts the alloy by the use of high temperature electron beam in pure argon gas condition. And the single crystals were annealed at 500$^{\circ}C$ and 700$^{\circ}C$ respectively and tensile tested at room temperature. According to the result, B2 phase has more good elongation than DO$_3$ phase. It was also found that the fracture surfaces of the single crystals have hairline facets in same direction, and the facets change the direction according to the single crystal phase.

Temperature Dependence of The Magnetoimpedence Effect in Nanocrystalline $Fe_{84}Zr_7B_6Cu_1Al_2$ Alloy

  • Kwon, Hye-Suk;Lee, Heebok;Kim, Yong-Kook;Yoon, Sung-Ho;Kim, Taik-Kee;Yu, Seong-Cho
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.473-479
    • /
    • 2000
  • The nanocrystalline Fe$_{84}$Zr$_{7}$B$_{6}$Cu$_{1}$ $Al_{2}$ alloy was annealed at 450 $^{\circ}C$ and 550 $^{\circ}C$ for l hour to achieve the ultra-soft magnetic properties such as large magnetoimpedence ratio(MIR), the incremental permeability ratio(PR), nearly zero coercivity, zero magnetostriction, etc. The PR and MIR of the sample were measured from 100 kHz to 10 MHz at a cryogenic chamber where the temperature can be varie from 10 K to 300 K. The increment of MIR value is proportional to increasing temperature. The maximum PR values measured at high frequency above 1 MHz remain almost same despite of the temperature variation from 10 K to 300 K except the sharpness in PR curves. However, the maximum PR values measured below 1 MHz show drastic increment at above 150K due to thermal activation of magnetic domains.s.s.

  • PDF

Magnetic Properties of FeCuNbSiB Nanocrystalline Alloy Powder Cores Using Ball-milled Powder

  • Kim, G. H.;T. H. Noh;Park, G. B.;Kim, K. Y.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.202-203
    • /
    • 2002
  • Ribbon type nanocrystalline alloy cores have shown excellent soft magnetic properties in the high frequency range because of small crystalline anisotropy and nearly zero magnetostriction[1]. In present, however ribbon alloys gives some limit in applications such as a large inductor and reactors of PFC circuit, which are required good DC bias property and low loss in the high frequency. Powder alloys with ultra fine grain structure can be an important way to overcome this kind of disadvantage, and to improve the high frequency soft magnetic properties in conventional metallic powder cores[2]. (omitted)

  • PDF

Fabrication and Properties of MI Sensor Device using CoZrNb Films (CoZrNb막을 이용한 MI센서 소자의 제작 및 특성)

  • Hur, J.;Kim, Y.H.;Shin, K.H.;Sa-Gong, G.
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.1
    • /
    • pp.52-58
    • /
    • 2004
  • Magneto-Impedance(MI) sensor is a highly sensitive sensor, which was able to detect a weak geomagnetic field. It also has a merit to be able to build in the low power system. In this study, their magnetic permeability and anisotropy field(H$\sub$k/) as a function of some different thickness of sputtered amorphous CoZrNb films with zero-magnetostriction and soft magnetic property are investigated. In order to make a uniaxial anisotropy, film was subjected to the post annealing in a static magnetic field with 1KOe intensity at 250, 300, and 320$^{\circ}C$ respectively for 2 hours. Magnetic properties of films are measured by using a M-H loop tracer. Magnetic permeability of a film is measured over the frequency range from 1 ㎒ to 750㎒. By thickening a CoZrNb film relatively, magnetic permeability and impedance are examine to design the. MI sensor which drives at 50㎒, and thereof fabricated the MI sensor which drives at the 50㎒.

Impedance of CoZrNb Film as a Function of Frequency (CoZrNb막의 주파수에 따른 임피던스의 변화)

  • Hur, J.;Kim, Y.H.;Shin, K.H.;Park, K.I.;SaGong, G.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.778-781
    • /
    • 2002
  • MI(Magneto-Impedance) sensor which is made by thin films has significantly high detecting sensitivity in weak magnetic field. It also has a merit to be able to build in the low power system. Its structure is simple, which makes it easier to prepare a miniature. In this study, its magnetic permeability and anisotropy field$(H_k)$ as a function of a thickness of sputtered amorphous CoZrNb films with zero-magnetostriction and excellent soft magnetic property are investigated. In order to make a uniaxial anisotropy, film was subjected to the post annealing in a static magnetic field with 1KOe intensity at 250, 300, and $320^{\circ}C}$ respectively for 2 hours. Anisotropy field$(H_k)$ of film is measured by using a MH loop tracer. Its magnetic permeability of a film is measured over the frequency range from 1 MHz to 750MHz. It has shown that the magnetic permeability of amorphous CoZrNb film is decreased due to the skin effect with increasing a thickness of the CoZrNb film, and hence its driving frequency is lowered. And, it was examined on the permeability and impedance to fabricate the MI sensor which acts at a low frequency by thickening a CoZrNb film relatively.

  • PDF

Magneto-Impedance Effect of FeCoSiB Amorphous Magnetic Films (FeCoSiB계 아몰퍼스 자성박막의 자기-임피 던스 효과)

  • Shin, Yong-Jin;Soh, Dae-Hwa;Kim, Hyen-Wook;Kim, Dae-Ju;Seo, Kang-Soo
    • Korean Journal of Materials Research
    • /
    • v.8 no.3
    • /
    • pp.252-255
    • /
    • 1998
  • In this paper, we investigate the magneto-impedance(M1) effect of the FeCoSiB amorphous magnktic films. The amorphous magnetic film having near zero magnetostriction is fabricated by using the sputtering method, and then annealed in magnetic field. When the external magnetic field is directly applied to the fabricated film, the voltage amplitude between both side of the magnetic film varies about 76.2% at 120[MHzl and the impedance varies about 2.1%/0e. Thus, we find that the fabricated magnetic film has the characteristics of good sensor element.

  • PDF

Fabrication and Properties of MI Sensor using CoZrNb films (CoZrNb 막을 이용한 MI센서 제작 및 특성)

  • Hur, J.;Kim, Y.H.;Shin, K.H.;SaGong, G.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.132-135
    • /
    • 2002
  • MI(Magneto-Impedance) sensor which is made by thin films has significantly high detecting sensitivity in weak magnetic field. It also has a merit to be able to build in the low power system. Its structure is simple, which makes it easier to prepare a miniature. In this study, its magnetic permeability and anisotropy field($H_{k}$) as a function of a thickness of sputtered amorphous CoZrNb films with zero-magnetostriction and soft magnetic property are investigated. In order to make a uniaxial anisotropy, film was subjected to the post annealing in a static magnetic field with 1KOe intensity at 250, 300, and $320^{\circ}C$ respectively for 2 hours. Magnetic properties of film are measured by using a MH loop tracer. Its magnetic permeability of a film is measured over the frequency range 1 MHz to 750MHz. And, it was examined on the permeability and impedance to design the MI sensor which acts at 50MHz by thickening a CoZrNb film relatively, and fabricated the MI sensor which acts at the 50MHz.

  • PDF