• Title/Summary/Keyword: Zero current switching(ZCS)

Search Result 173, Processing Time 0.029 seconds

Development of 12V, 1000A Isolated Bidirectional Resonant DC-DC Converter (12V, 1000A 절연형 양방향 공진형 DC-DC 컨버터 개발)

  • Park, Jun-Sung;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.57-63
    • /
    • 2014
  • In this paper a bidirectional DC-DC converter is proposed for renewable energy systems, eco-friendly vehicles, energy storage systems, uninterruptible power supply(UPS) systems and battery test equipments. The two-stage bidirectional converter employing a fixed-frequency series loaded resonant converter is designed to be capable of operating under zero-current-switching turn on and turn off regardless of voltage and load variation, and hence its magnetic components and EMI filters can be optimized. And efficiencies and volumes of the two-stage bidirectional converters are compared according to configuration of isolated and non-isolated parts and a two-stage topology suitable for low voltage and high current applications is proposed. A 12kW(12V, 1000A) prototype of the proposed converter has been built and tested to verify the validity of the proposed operation.

A Study of Dimmable Magnetic Ballast for 250W HID-Lamp (250W HID-Lamp용 자기식 조도 제어형 안정기 연구)

  • Park, Chong-Yeun;Shin, Dong-Sick;Lee, Hyun-Jin;Lim, Byoung-Noh
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1996-1997
    • /
    • 2007
  • 본 논문은 기존 250W HID-Lamp용 조도 제어형 자기식 안정기의 기계식 릴레이를 이용한 ZCS(Zero Current Switching) 방법을 제안하였다. 램프의 영 전류를 검출하고, MCU를 이용하여 기계식 릴레이의 스위치 on/off시간을 제어하였다. 이 ZCS방법을 실험을 통하여 타당성을 입증하였다.

  • PDF

A Study on the Parameter Optimization of Inverter for Induction Heating Cooking Appliance (유도가열 조리기기용 인버터 파라미터 최적화에 관한 연구)

  • Kang, Byung-Kwan;Lee, Se-Min;Park, Jung-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.77-85
    • /
    • 2009
  • With the advent of power semiconductor switching devices, power electronics relating to high frequency electromagnetic eddy current based induction heating technology have become more suitable and acceptable. This paper presents high-frequency induction heating cooking appliance circuit based on the zero current switching-PWM single ended push-pull(ZCS-PWM SEPP) resonant inverter added AC-DC converter. This inverter uses pulse-width-modulation(PWM) control method with active auxiliary quasi-resonant lossless inductor snubbers and a switched capacitor. To improved the transient performance, the PI controller is applied for this system. For the systematic parameter optimization of the PI controller, the gradient-based optimization algorithm is applied. The performance of optimized parameters is evaluated using simulation and experimental test. These results show that the proposed systematic optimal tuning method improve the transient performances of this system.

A 3.3kW Bi-directional EV Charger with V2G and V2H function (V2G-V2H 기능을 갖는 3.3kW급 전기자동차용 양방향 충전기)

  • Jung, Se-Hyung;Hong, Seok-Yong;Park, Jun-Sung;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.1
    • /
    • pp.31-37
    • /
    • 2015
  • This paper proposes a 3.3-kW bi-directional EV charger with V2G and V2H functions. The bi-directional EV charger consists of a DC-DC converter and a DC-AC inverter. The proposed EV charger is suitable for wide battery voltage control due to the two-stage configuration of the DC-DC converter. By employing a fixed-frequency series loaded resonant converter as the isolated DC-DC converter, zero-current-switching can be achieved regardless of battery voltage variation, load variation, and power flow. A 3.3-kW prototype of the proposed EV charger has been built and verified with experiments, and indicates a maximum efficiency of 94.39% and rated efficiency of 94.23%.

High Efficiency Frequency Tunable Inverse Class-E Amplifier (고효율 주파수 가변 역 E-급 증폭기)

  • Kim, Young
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.2
    • /
    • pp.176-182
    • /
    • 2010
  • This paper proposes that an inverse class-E amplifier is used a tunable parallel resonator at output port in order to maintain a high power-added efficiency(PAE) and output power with wide frequency ranges. A tunable circuit has a constant Q factor at operating frequency ranges and because of using varactor diode, the inductor and capacitor values of resonator can be changed. Also, the inductance value for zero-current switching (ZCS) is implemented a lumped element and the capacitance value is made a distributed element for phase compensation. The inverse class E amplifier using tunable parallel resonator is obtained to deliver 25dBm output power and achieve maximum power added efficiency(PAE) of 75% at 65-120MHz frequency ranges.

A Novel Step-up AC-DC Converter with PFC by Discontinuous Current Control (전류불연속 제어에 의한 새로운 PFC 승압형 AC-DC 컨버터)

  • Kim, Choon-Sam;Shim, Jae-Sun;Kim, Chun-Sik;Lee, Hyun-Woo;Kwak, Dong-Kurl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.142-148
    • /
    • 2006
  • In this paper, authors propose a novel step-up AC-DC converter operated with power factor correction (PFC) and with high efficiency. The proposed converter behaves with discontinuous current control (DCC) of input current. The input current waveform in the proposed converter is got to be a discontinuous sinusoid form in proportion to magnitude of at input voltage under the constant duty cycle switching. Therefore, the input power factor is nearly unity and the control method is simple. In the general DCC converters, the switching devices are turned-on with the zero current switching (ZCS). But turn-off of the switching devices is done at the maximum current. To achieve a soft switching at turn-off, the proposed converter uses a new partial resonant circuit, which results in the very low switching loss and the high efficiency of converter.

Zero-Voltage-Transition PWM DC-DC Converter Using A New Active-Snubber-Cell (새로운 액티브 스너버 셀을 적용한 ZVT PWM DC-DC 컨버터)

  • Tran, Hai N.;Naradhipa, Adhistira M.;Kim, Sun-Ju;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.4
    • /
    • pp.273-280
    • /
    • 2018
  • This paper proposes a zero-voltage-transition pulse-width modulation (PWM) DC-DC converter that uses a new active-snubber-cell. The converter main switch can be turned on and off with ZVS, while the snubber switch is turned on with ZCS and turned off with ZVS. Other semiconductor devices are operated under the soft-switching condition. Normal PWM control can be used, the proposed active-snubber-cell does not impose any additional voltage and current stresses. The active-snubber-cell is suitable for high-power applications due to its easy integration into interleaved converters. This paper discusses the operation of the converter, presents some design guidelines, and provides the results of an experiment with a 100 kHz and 1 kW prototype. A peak efficiency of 97.8% is recorded.

Deadbeat Controller Design of a ZCS-type Power Factor Correction Circuit(QBSRR) (ZCS형 역률 개선 회로(QBSRR)의 데드빗(deadbeat)제어기 설계)

  • 최현칠
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.2
    • /
    • pp.107-117
    • /
    • 1998
  • In this paper, a deadbeat controller design technique is developed for the recently introduced PFC(Power Factor Correction) circuit named as a QBSRR(Quantum Boost Series Resonant Rectifier) to achieve the fast dynamic responses of the output voltage in the presense of any load variations. And, in order to monitor the load information without employing the current sensor, the load estimation method is also derived. By using the information of the load estimation method, the proposed controller gain is automatically adjusted to have the system always keep the very fast dynamic responses. To verify these superior performances, the simulation and the experiment are carried out.

Implementation of an Interleaved AC/DC Converter with a High Power Factor

  • Lin, Bor-Ren;Lin, Li-An
    • Journal of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.377-386
    • /
    • 2012
  • An interleaved bridgeless buck-boost AC/DC converter is presented in this paper to achieve the characteristics of low conduction loss, a high power factor and low harmonic and ripple currents. There are only two power semiconductors in the line current path instead of the three power semiconductors in a conventional boost AC/DC converter. A buck-boost converter operated in the boundary conduction mode (BCM) is adopted to control the active switches to achieve the following characteristics: no diode reverse recovery problem, zero current switching (ZCS) turn-off of the rectifier diodes, ZCS turn-on of the power switches, and a low DC bus voltage to reduce the voltage stress of the MOSFETs in the second DC/DC converter. Interleaved pulse-width modulation (PWM) is used to control the switches such that the input and output ripple currents are reduced such that the output capacitance can be reduced. The voltage doubler topology is adopted to double the output voltage in order to extend the useable energy of the capacitor when the line voltage is off. The circuit configuration, principle operation, system analysis, and a design example are discussed and presented in detail. Finally, experiments on a 500W prototype are provided to demonstrate the performance of the proposed converter.

A Study on ZVT Forward Converter using Primary Auxiliary Circuit (1차측 보조회로를 이용한 ZVT Forward 컨버터에 관한 연구)

  • Lee, Dong-Hyun;Kim, Yong;Bae, Jin-Yong;Yoon, Shin-Yong;Lee, Kyu-Hoon;Cho, Kyu-Man
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.235-238
    • /
    • 2003
  • This paper presents an ZVT(Zero Voltage Transition) Forward Converter using Primary Auxiliary Circuit operation. An auxiliary resonant circuit was added to the basic forward converter, implementing the fVT technique for the main switch. The switch employed by the auxiliary circuit operates under Zero-Current-Switching(ZCS) condition. The complete operating principle, simulation and experimental results are presented

  • PDF