• Title/Summary/Keyword: Zero Magnetic Field

Search Result 172, Processing Time 0.03 seconds

A Study of Characteristic of Electrical-magnetic and Neutron Diffraction of Long-wire High-superconductor for Reducing Energy Losses

  • Jang, Mi-Hye
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.6
    • /
    • pp.265-272
    • /
    • 2008
  • In this paper, AC losses of long wire Bi-2223 tapes with different twist pitch of superconducting core were fabricated, measured and analyzed. These samples produced by a powder-in-tube method are multi-filamentary tape with Ag matrix. Also, it's produced by non-twist. The critical current measurement was carried out under the environment in Liquid nitrogen and in zero field by 4-prob method. And the Magnetic measurement was carried out under the environment of applied time-varying transport current by transport method. From experiment, the susceptibility measurements were conducted while cooling in a magnetic field. Flux loss measurements were conducted as a function of ramping rate, frequency and field direction. The AC flux loss increases as the twist-pitch of the tapes decreased, in agreement with the Norris Equation. Neutron-diffraction measurements have been carried out investigate the crystal structure, magnetic structures, and magnetic phase transitions in Bi-2223([Bi, Pb]:Sr:Ca:Cu:O).

Optical Transitions of a InGaP-AlInGaP Semiconductor Single Quantum Well in Magnetic Fields

  • Kim, Yong-Min;Sin, Yong-Ho;Song, Jin-Dong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.332.1-332.1
    • /
    • 2016
  • Application of magnetic fields is important to characterize the carrier dynamics in semiconductor quantum structures. We performed photoluminescence (PL) measurements from an InGaP-AlInGaP single quantum well under pulsed magnetic fields to 50 T. The zero field interband PL transition energy matches well with the self-consistent Poisson-Schr?dinger equation. We attempted to analyze the dimensionality of the quantum well by using the diamagnetic shift of the magnetoexciton. The real quantum well has finite thickness that causes the quasi-two-dimensional behavior of the exciton diamagnetic shift. The PL intensity diminishes with increasing magnetic field because of the exciton motion in the presence of magnetic field.

  • PDF

Parameter Characteristics of the Electric and Magnetic Field Waveforms Associated with Lightning Discharges (뇌방전에 의해서 발생하는 전계와 자계파형의 파라미터 해석)

  • Park, Sung-Yeol;Lee, Bok-Hee;Jeon, Duk-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1867-1869
    • /
    • 1996
  • In this paper, in order to obtain the statistic information for parameters of electric and magnetic field waveforms associated with lightning discharges, the electric and magnetic fields produced by lightning discharges in the summer of 1995 were measured by a hemisphere-type electric field sensor and a loop-type magnetic field sensor, which were installed at the campus of Inha University in Inchon. The signals of the electric and magnetic fields were continuously recorded by a transient digitizer having a resolution of 12 bit and a memory capacity of 5000 point. Negative lightning discharges are produced very more than positive lightning discharges in the summer of Korea. The 10 to 90 % rise time of electric and magnetic fields was 2 $2\;{\sim}\;10\;{\mu}s$. And the zero-crossing time of electric field was $15\;{\sim}\;25\;{\mu}s$, whereas that of magnetic field was $20\;{\sim}\;30\;{\mu}s$.

  • PDF

Effect of asymmetric magnetic fields on the interface shape in Czochralski silicon crystals (Cz 실리콘 단결정에서 비대칭 자기장이 고액 계면에 미치는 영향)

  • Hong, Young-Ho;Shim, Kwang-Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.4
    • /
    • pp.140-145
    • /
    • 2008
  • Silicon single crystals are grown by Czochralski (CZ) method in different growing conditions. The different shapes of the crystal-melt interface are obtained with various magnetic fields. Effects of zero-Gauss plane (ZGP) shape and magnetic intensity (MI) on the crystal-melt interface in the crystal experimentally are investigated. The shape of ZGP is not only flat but also parabolic, which is due to magnetic ratio (MR) of the lower to upper current densities in the configurations of the cusp-magnetic fields. As the MR increases, the crystal-melt interface becomes more concave. It means that the hot melt can be easily transported to the crystal-melt interface with increasing the MR. Effective shape of the crystal-melt interface is found to depend on the magnetic field in cusp-magnetic CZ method. The experimental results are compared with other studies and discussed.

A Study on the Occurrence Cause of the Zero Sequence Voltage at Tertiary Side of 345[kV] Main Transformer (345[kV] 주변압기 3차측 영상전압 발생원인 분석 및 대책에 관한 연구)

  • Woo, Jung-Wook;Kweon, Dong-Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.9
    • /
    • pp.150-158
    • /
    • 2010
  • We had experienced the several system failures which were concerned about zero sequence voltages at the tertiary side of 345[kV] transformers. In this paper, we had considered the zero sequence voltage and its reduction methods at the 345[kV] auto-transformer tertiary. For analysis, we used EMTP(Electro-Magnetic Transients Program). The calculation results by EMTP were compared with the measured data of the field tests. From the calculation and the field tests, we had verified that it is due to pre-saturation characteristics of the potential transformer. So, we had improved its saturation characteristics and applied it at real site. After improvements, we could reduce the zero sequence voltage below the setting level of the relay.

Theory of specific heat discontinuity of the superconductor under applied magnetic field (인가자기장 세기에 따른 초전도체 비열 불연속성 변화에 관한 이론)

  • 어익수;김철호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.1
    • /
    • pp.17-20
    • /
    • 2004
  • We derive specific heat gap at the critical temperature as an exact anylitical function of applied magnetic field by using the thermodynamics. And we calculate numerical value of specific heat gap for some superconductors with the derived results and discuss the physical meaning. And it will be discussed that gap of specific heat discontinuity under certain magnetic field intensity become zero at the critical temperature.

Three-fold Symmetry Effect on Mn2+ Centers in a LiNbO3 Crystal

  • Park, II-Woo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.12 no.2
    • /
    • pp.103-110
    • /
    • 2008
  • Spin Hamiltonian for the paramagnetic center with a three-fold symmetry and high spin ($S{\geq}2$) multiplicity should contain the fourth order zero-field splitting (ZFS) terms. Electron magnetic resonance transition lines of the center with S = 5/2 are expected to split in a pair when the magnetic field is applied off the principal axes of ZFS, while they are superimposed when the magnetic field is applied parallel to the principal axes of ZFS. In this study we report that the transition lines of $Mn^{2+}$ centers at the three-fold symmetric sites in $LiNbO_3$, chemically equivalent but physically different, split in two due to the nonzero fourth order ZFS term.

Flow Control and Drag Reduction of a Circular Cylinder by an External Magnetic Field (자기장을 사용한 원형주상체 주위의 유동 제어 및 저항감소)

  • 윤현식;전호환
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.2
    • /
    • pp.70-78
    • /
    • 2004
  • The present study numerically investigates two-dimensional laminar flow past a circular cylinder in an aligned magnetic field using the spectral method. Numerical simulations are performed for flow fields with Re=100 and 200 in the range of 0$\leq$N$\leq$10, where Ν is the Stuart number that is the ratio of electromagnetic force to inertial force. The present study reports the detailed information of flow quantities on the cylinder surface at different Stuart numbers. It is shown that the vortex shedding can be controlled by the magnetic force representing the Stuart number. As Ν increases, the vortex shedding becomes weaker, resulting in drag reduction whose magnitude is the largest at a critical value. In addition, as the magnetic force increases, the lift amplitude decreases, reaching zero at the critical number.

Hybrid design method for air-core solenoid with axial homogeneity

  • Huang, Li;Lee, Sangjin;Choi, Sukjin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.50-54
    • /
    • 2016
  • In this paper, a hybrid method is proposed to design an air-core superconducting solenoid system for 6 T axial uniform magnetic field using Niobium Titanium (NbTi) superconducting wire. In order to minimize the volume of conductor, the hybrid optimization method including a linear programming and a nonlinear programming was adopted. The feasible space of solenoid is divided by several grids and the magnetic field at target point is approximated by the sum of magnetic field generated by an ideal current loop at the center of each grid. Using the linear programming, a global optimal current distribution in the feasible space can be indicated by non-zero current grids. Furthermore the clusters of the non-zero current grids also give the information of probable solenoids in the feasible space, such as the number, the shape, and so on. Applying these probable solenoids as the initial model, the final practical configuration of solenoids with integer layers can be obtained by the nonlinear programming. The design result illustrates the efficiency and the flexibility of the hybrid method. And this method can also be used for the magnet design which is required the high homogeneity within several ppm (parts per million).

Orientation and thickness dependence of magnetic levitation force and trapped magnetic field of single grain YBa2Cu3O7-y bulk superconductors

  • Jung, Y.;Go, S.J.;Joo, H.T.;Lee, Y.J.;Park, S.D.;Jun, B.H.;Kim, C.J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.1
    • /
    • pp.30-35
    • /
    • 2017
  • The effects of the crystallographic orientation and sample thickness on the magnetic levitation forces (F) and trapped magnetic field (B) of single grain YBCO bulk superconductors were examined. Single grain YBCO samples with a (001), (110) or (100) surface were used as the test samples. The samples used for the force-distance (F-d) measurement were cooled at 77 K without a magnetic field (zero field cooling, ZFC), whereas the samples used for the B measurement were cooled under the external magnetic field of a Nd-B-Fe permanent magnet (field cooling, FC). It was found that F and B of the (001) surface were higher than those of the (110) or (100) surface, which is attributed to the higher critical current density ($J_c$) of the (001) surface. For the (001) samples with t=5-18 mm, the maximum magnetic levitation forces ($F_{max}s$) of the ZFC samples were larger than 40 N. About 80% of the applied magnetic field was trapped in the FC samples. However, the F and B decreased rapidly as t decreased below 5 mm. There exists a critical sample thickness (t=5 mm for the experimental condition of this study) for maintaining the large levitation/trapping properties, which is dependent on the material properties and magnitude of the external magnetic fields.