• Title/Summary/Keyword: Zero Knowledge Proof

Search Result 41, Processing Time 0.02 seconds

Efficient Proof of Vote Validity Without Honest-Verifier Assumption in Homomorphic E-Voting

  • Peng, Kun
    • Journal of Information Processing Systems
    • /
    • v.7 no.3
    • /
    • pp.549-560
    • /
    • 2011
  • Vote validity proof and verification is an efficiency bottleneck and privacy drawback in homomorphic e-voting. The existing vote validity proof technique is inefficient and only achieves honest-verifier zero knowledge. In this paper, an efficient proof and verification technique is proposed to guarantee vote validity in homomorphic e-voting. The new proof technique is mainly based on hash function operations that only need a very small number of costly public key cryptographic operations. It can handle untrusted verifiers and achieve stronger zero knowledge privacy. As a result, the efficiency and privacy of homomorphic e-voting applications will be significantly improved.

Privacy-Preserving Credit Scoring Using Zero-Knowledge Proofs (영지식 증명을 활용한 프라이버시 보장 신용평가방법)

  • Park, Chul;Kim, Jonghyun;Lee, Dong Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.6
    • /
    • pp.1285-1303
    • /
    • 2019
  • In the current credit scoring system, the credit bureau gathers credit information from financial institutions and calculates a credit score based on it. However, because all sensitive credit information is stored in one central authority, there are possibilities of privacy violations and successful external attacks can breach large amounts of personal information. To handle this problem, we propose privacy-preserving credit scoring in which a user gathers credit information from financial institutions, calculates a credit score and proves that the score is calculated correctly using a zero-knowledge proof and a blockchain. In addition, we propose a zero-knowledge proof scheme that can efficiently prove committed inputs to check whether the inputs of a zero-knowledge proof are actually provided by financial institutions with a blockchain. This scheme provides perfect zero-knowledge unlike Agrawal et al.'s scheme, short CRSs and proofs, and fast proof and verification. We confirmed that the proposed credit scoring can be used in the real world by implementing it and experimenting with a credit score algorithm which is similar to that of the real world.

Compact E-Cash with Practical and Complete Tracing

  • Lian, Bin;Chen, Gongliang;Cui, Jialin;He, Dake
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3733-3755
    • /
    • 2019
  • E-cash has its merits comparing with other payment modes. However, there are two problems, which are how to achieve practical/complete tracing and how to achieve it in compact E-cash. First, the bank and the TTP (i.e., trusted third party) have different duties and powers in the reality. Therefore, double-spending tracing is bank's task, while unconditional tracing is TTP's task. In addition, it is desirable to provide lost-coin tracing before they are spent by anyone else. Second, compact E-cash is an efficient scheme, but tracing the coins from double-spender without TTP results in poor efficiency. To solve the problems, we present a compact E-cash scheme. For this purpose, we design an embedded structure of knowledge proof based on a new pseudorandom function and improve the computation complexity from O(k) to O(1). Double-spending tracing needs leaking dishonest users' secret knowledge, but preserving the anonymity of honest users needs zero-knowledge property, and our special knowledge proof achieves it with complete proofs. Moreover, the design is also useful for other applications, where both keeping zero-knowledge and leaking information are necessary.

ZERO-KNOWLEDGE PROOFS FROM SPLWE-BASED COMMITMENTS

  • Kim, Jinsu;Kim, Dooyoung
    • East Asian mathematical journal
    • /
    • v.38 no.1
    • /
    • pp.85-94
    • /
    • 2022
  • Recently, an LWE-based commitment scheme is proposed. Their construction is statistically hiding as well as computationally binding. On the other hand, the construction of related zero-knowledge protocols is left as an open problem. In this paper, we present zero-knowledge protocols with hardness based on the LWE problem. we show how to instantiate efficient zero-knowledge protocols that can be used to prove linear and sum relations among these commitments. In addition, we show how the variant of LWE, spLWE problem, can be used to instantiate efficient zero-knowledge protocols.

A Study on Efficient Data De-Identification Method for Blockchain DID

  • Min, Youn-A
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.60-66
    • /
    • 2021
  • Blockchain is a technology that enables trust-based consensus and verification based on a decentralized network. Distributed ID (DID) is based on a decentralized structure, and users have the right to manage their own ID. Recently, interest in self-sovereign identity authentication is increasing. In this paper, as a method for transparent and safe sovereignty management of data, among data pseudonymization techniques for blockchain use, various methods for data encryption processing are examined. The public key technique (homomorphic encryption) has high flexibility and security because different algorithms are applied to the entire sentence for encryption and decryption. As a result, the computational efficiency decreases. The hash function method (MD5) can maintain flexibility and is higher than the security-related two-way encryption method, but there is a threat of collision. Zero-knowledge proof is based on public key encryption based on a mutual proof method, and complex formulas are applied to processes such as personal identification, key distribution, and digital signature. It requires consensus and verification process, so the operation efficiency is lowered to the level of O (logeN) ~ O(N2). In this paper, data encryption processing for blockchain DID, based on zero-knowledge proof, was proposed and a one-way encryption method considering data use range and frequency of use was proposed. Based on the content presented in the thesis, it is possible to process corrected zero-knowledge proof and to process data efficiently.

Zero-knowledge proof based authentication protocol in ad-hoc wireless network (Ad-hoc wireless network에서의 authentication을 보장하는 zero-knowledge proof 기반의 프로토콜)

  • 윤여원;예흥진
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 2002.11a
    • /
    • pp.473-476
    • /
    • 2002
  • 본 논문에서는 ad-hoc wireless network에서 상호간의 사전지식 없이 상대편을 authenticate하는 프로토콜을 제시한다. 기존에 Dirk Balfanz et al에 의해 제시된 변형된interactive Guy Fawkes protocol은 해쉬함수의, 전달하고자 하는 메시지와 그 authenticator의 해쉬값을 보내고, 다음 단계에서 그 원본을 밝히는 원리를 이용한 것으로, PKI 없이 해쉬함수 만으로 상호인증과 메시지의 무결성을 보장함으로써 전반적인 ID 체계와 public key encryption, decryption 연산에 대한 부담을 덜었다. 하지만, 이것은 여전히 eavesdropping같은 passive attack에 노출되어 있다[1]. 본 논문에서는 zero-knowledge 기반의 프로토콜을 이용하여 상호 정보를 교환할 수 없는 환경에서도 안전하게 상호 authentication을 가능하게 하는 방법을 제시한다.

  • PDF

A Study on the Processing Method of pseudonym information considering the scope of data usage

  • Min, Youn-A
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.5
    • /
    • pp.17-22
    • /
    • 2021
  • With the application of the Data 3 method, the scope of the use of pseudonym information has expanded. In the case of pseudonym information, a specific individual can be identified by linking and combining with various data, and personal information may be leaked due to incorrect use of the pseudonym information. In this paper, we propose the scope of use of data is subdivided and a differentiated pseudonym information processing method according to the scope. For the study, the formula was modified by using zero-knowledge proof among the pseudonym information processing methods, and when the proposed formula was applied, it was confirmed that the performance improved by an average of 10% in terms of verification time compared to the case of applying the formula of the existing zero-knowledge proof.

A Study on the Key Distribution System based on the Zero-Knowledge Proof (영지식증명을 이용한 키분배방식에 관한 연구)

  • 이윤호;양형규;장청룡;원동호
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 1991.11a
    • /
    • pp.85-94
    • /
    • 1991
  • Fiat, Shamir의 ZKIP(zero knowledge interactive proofs) 방식을 이용한 새로운 키분배방식을 제안한다. 본 방식은 평방잉여를 이용한 Fiat, Shamir의 ZKIP 방식을 이용하여 상호인증을 행하고 그 과정에서 교환되는 데이타를 사용하여 비밀통신용 공통키를 생성한다. 공통키 생성 과정에 사용된 데이타가 인증 과정에서 사용된 데이타이고, 인증 과정은 ZKIP 방식을 이용했으므로 제안한 키분배방식 역시 zero knowledge일 것으로 생각되며 ZKIP 방식은 인증 과정의 반복으로 인한 통신량이 많은 반면 제안한 방식은 인증과정에서의 반복횟수가 1이기 때문에 상대적으로 통신량이 적은 이점이 있다.

  • PDF

Generalization of Zero-Knowledge Proof of Polynomial Equality (다항식 상등성 영지식 증명의 일반화)

  • Kim, Myungsun;Kang, Bolam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.5
    • /
    • pp.833-840
    • /
    • 2015
  • In this paper, we are interested in a generalization of zero-knowledge interactive protocols between prover and verifier, especially to show that the product of an encrypted polynomial and a random polynomial, but published by a secure commitment scheme was correctly computed by the prover. To this end, we provide a generalized protocol for proving that the resulting polynomial is correctly computed by an encrypted polynomial and another committed polynomial. Further we show that the protocol is also secure in the random oracle model. We expect that our generalized protocol can play a role of building blocks in implementing secure multi-party computation including private set operations.

Zero-knowledge proof algorithm for Data Privacy

  • Min, Youn-A
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.67-75
    • /
    • 2021
  • As pass the three revised bills, the Personal Information Protection Act was revised to have a larger application for personal information. For an industrial development through an efficient and secure usage of personal information, there is a need to revise the existing anonymity processing method. This paper modifies the Zero Knowledge Proofs algorithm among the anonymity processing methods to modify the anonymity process calculations by taking into account the reliability of the used service company. More detail, the formula of ZKP (Zero Knowledge Proof) used by ZK-SNAKE is used to modify the personal information for pseudonymization processing. The core function of the proposed algorithm is the addition of user variables and adjustment of the difficulty level according to the reliability of the data user organization and the scope of use. Through Setup_p, the additional variable γ can be selectively applied according to the reliability of the user institution, and the degree of agreement of Witness is adjusted according to the reliability of the institution entered through Prove_p. The difficulty of the verification process is adjusted by considering the reliability of the institution entered through Verify_p. SimProve, a simulator, also refers to the scope of use and the reliability of the input authority. With this suggestion, it is possible to increase reliability and security of anonymity processing and distribution of personal information.