• Title/Summary/Keyword: Zero Energy Buildings

Search Result 78, Processing Time 0.018 seconds

Energy self-sufficiency of office buildings in four Asian cities

  • Kim, Jong-Jin
    • Advances in Energy Research
    • /
    • v.2 no.1
    • /
    • pp.11-20
    • /
    • 2014
  • This paper examines the climatic and technical feasibilities of zero energy buildings in Seoul, Shanghai, Singapore and Riyadh. Annual and seasonal energy demands of office buildings of various scales in the above cities were compared. Using optimally tilted rooftop PV panels, solar energy production potentials of the buildings were estimated. Based on the estimates of onsite renewable energy production and building energy consumption, the energy self-sufficiencies of the test buildings were assessed. The economic feasibilities of the PV systems in the four locations were analyzed. Strategies for achieving zero energy buildings are suggested.

A Study on the Methodology of Building Energy Consumption Estimation and Energy Independence Rate for Zero Energy City Planning Phase (제로에너지시티 계획을 위한 건물에너지 수요 예측 방법론 개발 및 자립률 산정에 대한 연구)

  • Bae, Eun-ji;Yoon, Yong Sang
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.5
    • /
    • pp.29-40
    • /
    • 2019
  • In response to the rapid climate change, in order to save energy in the field of buildings, the country is planning not only zero energy buildings but also zero energy cities. In the Urban Development Project, the Energy Use Plan Report is prepared and submitted by predicting the amount of energy demand at the planning stage. However, due to the activation of zero-energy buildings and the increase in the supply of new and renewable energy facilities, the energy consumption behavior of buildings in the city is changing from the previous ones. In this study, to estimate urban energy demand of Zero Energy City, building energy demand forecasts based on "Passive plans for use of energy based primary energy consumption", "Actual building energy usage data from Korea Appraisal Board" and "data from Certification of Building Energy Efficiency Rating" as well as demand forecast according to existing "Consultation about Energy Use Plan Code" were calculated and then applied to Multifunctional Administrative City 5-1 zone to compare urban total energy demand forecasts.

A Study on the Design Process of Zero Emission Buildings (ZEB(Zero Emission Building) 디자인 프로세스에 관한 연구)

  • Kang, Hae-Jin;Kang, Soo-Yeon;Park, Jin-Chul;Rhee, Eon-Gu
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.2
    • /
    • pp.39-45
    • /
    • 2010
  • Zero Emission Building is abuilding which emits virtually '0(zero)' carbon dioxide. Although simple in concept, ZEB requires totally different approach from conventional building in terms of design, engineering, construction and operation. There are few research on ZEB design process as ZEB design requires understanding and knowledge regarding energy and technology. The study aims to propose a design process of Zero Emission Building for architects. The study examined the concept of Zero Emission Building through intensive literature search. The examples of Zero Emission Buildings were investigated, and strategies and technologies applied to the buildings were analyzed. Various conventional design processes were identified and analyzed to examine the applicability to ZEB design, Finally, a new design process which effectively accommodate the requirement of Zero Emission Building was proposed.

A Study on the Issues and Trends of Zero Energy Policy (제로에너지 정책·제도 변화에 따른 이슈 및 트랜드 분석 연구)

  • Lee, Hangju;Kim, Insoo
    • Journal of Energy Engineering
    • /
    • v.29 no.2
    • /
    • pp.79-84
    • /
    • 2020
  • In order to reduce greenhouse gas by 30% compared to BAU in 2020, research and development of zero-energy building construction technology for reducing greenhouse gas emissions in the construction industry is being conducted. With the recent implementation of the policy as mandatory through the establishment and commercialization of the zero energy building base, the government should devise measures to support and expand technology through the identification of the current status of the zero-energy building incentive system and the erasure of the erasure. In order to implement zero-energy buildings, excessive construction costs are presented as a major issue in revitalizing the supply of new and renewable energy to enhance Passive (energy efficiency grade of 1++) and achieve self sufficiency of energy (20% or higher). In this paper, the major problems and solutions for zero-energy building identification were presented in order to activate the dissemination of zero-energy buildings, and the recent policy changes resulting from the mandatory use of zero-energy buildings were analyzed.

Development of Inter-link Converter for Power Transmission between Heterogeneous Systems (이종 계통 간의 전력전달을 위한 Inter-link 컨버터 개발)

  • Kim, Sun-Pil;Kim, Kuk-hyeon;Lee, Chang-ho;Le, Tuan-Vu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.1
    • /
    • pp.111-119
    • /
    • 2022
  • This paper is about power transfer between heterogeneous systems in zero-energy buildings. Currently, electricity used in buildings, from renewable energy generation power in buildings, consists of alternating current networks. In order to use electricity, alternating current must be converted to direct current, which typically results in a loss of 10%. In order to solve this problem, research is needed to reduce power loss as much as possible by implementing both a DC network and an AC network in a zero-energy building. Therefore, in this paper, an inter-link converter capable of bidirectional power transfer between DC and AC networks applied to zero-energy buildings is developed. The structure of the inter-link converter to be developed was proposed and its feasibility was verified through simulations and experiments.

A Study of Zero Energy Building Verification with Measuring and Model-based Simulation in Exhibition Building

  • Ha, Ju-wan;Park, Kyung-soon;Kim, Hwan-yong;Song, Young-hak
    • Architectural research
    • /
    • v.20 no.3
    • /
    • pp.93-102
    • /
    • 2018
  • With the change in Earth's ecosystems due to climate change, a number of studies on zero energy buildings have been conducted globally, due to the depletion of energy and resources. However, most studies have concentrated on residential and office buildings and the performance predictions were made only in the design phase. This study verifies the zero-energy performance in the operational phase by acquiring and analyzing data after the completion of an exhibition building. This building was a retention building, in which a renewable energy system using a passive house building envelope, solar photovoltaic power generation panels, as well as fuel cells were adopted to minimize the maintenance cost for future energy-zero operations. In addition, the energy performance of the building was predicted through prior simulations, and this was compared with actual measured values to evaluate the energy performance of the actual operational records quantitatively. The energy independence rate during the measurement period of the target building was 123% and the carbon reduction due to the energy production on the site was 408.07 tons. The carbon reduction exceeded the carbon emission (331.5 tons), which verified the carbon zero and zero-energy performances.

A methodology for verification of energy saving performance of Zero Energy School (ZES) (Zero Energy School(ZES) 에너지절감 성과 검증을 위한 방법론 연구)

  • Lee, Hangju;Ahn, JongWook;Kim, Insoo
    • Journal of Energy Engineering
    • /
    • v.28 no.1
    • /
    • pp.37-44
    • /
    • 2019
  • Domestic buildings account for 25% of national greenhouse gas emissions and 20% of energy consumption, so energy efficiency improvement of buildings is recognized as the main target of national energy demand management. To improve the energy efficiency of the building, policies are implemented by preparing "zero-energy building national roadmaps" and enhancing the efficiency of national energy demand management through early activation as a result of expansion of the mandatory zero-energy building. Also, there is a growing need to verify the performance of energy savings after the construction is completed. Therefore, methods for evaluating energy performance of buildings should be suggested. This paper aims to develop and present methods for verifying energy performance of Zero Energy School, which can be applied internationally, by visiting domestic schools on-site at the same time as international standards and guidance analysis.

A study on the analysis of energy performance for zero-energy building of rural village hall - Focused on the Jung Juk 4-le village hall - (농촌 마을회관 제로에너지 건축물 구축을 위한 에너지 성능 분석 연구 - 충남 태안군 정죽4리 마을회관을 중심으로 -)

  • Park, Mi-Lan;Choi, Jeong-Man;Lee, Jeong-Hun
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.20 no.4
    • /
    • pp.1-8
    • /
    • 2018
  • In this study, we survey the 2 buildings at the Central 1 and 8 buildings at the Central 2, which are divided by each climate region in the rural regions. Major heat loss factors are 47% loss of the outer shell including outer wall, roof, and bottom, 30% loss through window, and 23% loss through crevice wind. We analyze the energy simulation of ECO2 program to construct a zero energy building regarding village hall located in Jung Juk 4-le at Centeral 2. We simulate the primary energy requirement regarding village hall and the simulated results show the $265.3kWh/m^2{\cdot}a$ and it may estimate '2' energy efficiency grade. The energy requirement regarding village hall is the $183.2kWh/m^2{\cdot}a$ when the passive technology are applied in village hall. We research total amount of energy requirement in village hall when the passive and active technologies such as solar cell with 3kW and solar thermal with $20m^2$, geothermal power with 17.5kW. The simulated results show the improved energy efficiency certification grade with $1^{{+}{+}{+}}$ due to the reduced primary energy requirement with 73% when passive technology including 3kW of solar panel is applied and the energy independence rate is 54%, which is estimated to be 4th grade of zero energy buildings. The order of energy consumption are solar panel, solar thermal, and geothermal power under applied passive technology in the building. In order to expand the zero energy building, it is necessary to introduce the zero energy evaluation system in the rural region.

A Study on the Performance Increase in Building Energy Technology according to the Korea's Zero Energy Building Policy (한국의 제로에너지건축 정책 추진에 따른 건축물 에너지기술 성능 연구)

  • Shim, Hong-Souk;Lee, Sungjoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.543-553
    • /
    • 2021
  • As a key policy for achieving the goal of reducing GHG in the building sector, Korea has enforced the mandatory certification of zero-energy buildings for new buildings in the public sector from 2020. This study evaluated a policy to achieve Net Zero by identifying the trend of changes in building energy performance according to policy and presenting a methodology to analyze the current performance state of energy technology applied to buildings. The final goal was to help stakeholders apply appropriate energy technologies for new buildings. For this study, data collected on building energy efficiency certification over the last four years have shown a gradual increase in energy performance. In addition, K-means cluster analysis was used to analyze the performance status of energy technologies applied to buildings. The high and low clusters of education and office facilities were used to analyze the comparative group (2016-2020, 2020). As a result, the solar module area in both high and low clusters of education facilities increased by 261.1% and 283.5%. In contrast, the solar module area decreased by both high and low clusters of office facilities. The most passive and active technologies showed an increase in energy performance.

A study on the relationship between the existing building load for the advance ZEB certification system (ZEB 인증제 고도화를 위한 기존 건축물 부하별 연관성 연구)

  • Lee, Hangju;Maeng, Sunyoung;Kim, Insoo;Ahn, Jong-Wook
    • Journal of Energy Engineering
    • /
    • v.27 no.3
    • /
    • pp.21-27
    • /
    • 2018
  • In accordance with the implementation of the Zero Energy Building Certification System, it for the activation and expansion of the private sector is being steadily upgraded. Also The government has set up a step-by-step mandatory roadmap until it is expanded to the private sector, starting with the public sector. We analyzed the energy requirements of existing buildings from 2016 to 2017 and the by load relationships of major factor. Of the existing buildings, 714 buildings in central and southern areas excluding residential buildings such as apartments and officetels were classified and their primary energy requirements were analyzed. As new design technologies are applied, the demand for energy from the passive side is steadily declining. In addition, there is a need to interpret various methods to improve the zero energy building certification standard in the point that the zero energy building pilot project is continuously carried out in relation to the activation of renewable energy supply.