• Title/Summary/Keyword: Zero Energy Building Certification

Search Result 26, Processing Time 0.022 seconds

Analyzing the Significance of Enhancements in Zero Energy Building Rating Systems: A Comparative Study between Designers and Building Energy Assessors (설계자와 건축물 에너지 평가사 측면의 제로에너지 건축물 인증 활성화를 위한 중요도 비교 분석)

  • Myung, Il;Choi, Jong-Dae;Jung, Ho-Youn;Choi, Jae-Kyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.4
    • /
    • pp.453-464
    • /
    • 2023
  • This research conducts a comparative analysis of the perceived importance of advancing zero energy building certification from the viewpoints of two major stakeholders - designers and building energy assessors. Both groups prioritized the importance of policy, technology, education, incentives, and promotion respectively. For designers, enhancing energy efficiency standards, developing a skilled energy workforce, and implementing an office registration system emerged as critical factors in invigorating the certification process. The findings suggest potential avenues for the government to formulate realistic strategies for boosting the certification activity.

A study on the Increase in Construction Cost for Zero Energy Building (제로에너지건축물의 공사비 증가분 산출에 관한 연구)

  • Shim, Hong-Souk;Lee, Sungjoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.603-613
    • /
    • 2021
  • As a core policy for achieving the goal of reducing greenhouse gas emissions in the building sector, Korea has enforced the mandatory certification of zero energy buildings for new public buildings from 2020. This study suggests energy-saving technologies and economic factors that building officials can refer to for decision-making on the implementation of zero energy buildings. For this study, the construction cost for the energy item of a building was analyzed by collecting the building energy efficiency level certification data and detailed construction cost statement data from public institutions for the last three years. Based on the building energy efficiency certification data, each energy item of the baseline building was derived, and the energy performance of the zero energy building was derived through repetitive simulations by gradually increasing the energy performance value of the baseline building. By applying the analyzed construction cost, the construction cost for each energy item of the baseline and zero energy buildings was derived. As a result, the lighting equipment contributed up to 10.5% energy savings, and the increase in construction cost of the cooling and heating system was at least 9.1%.

A Study on the Estimation of Additional Cost for the Certification of Zero Energy Apartment Buildings (공동주택 제로에너지빌딩 인증을 위한 적정가산비 산정에 관한 연구)

  • Sa, Yong-gi;Haan, Chan Hoon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.5
    • /
    • pp.21-30
    • /
    • 2019
  • Environmental and energy issues such as abnormal climate and depletion of fossil fuel due to global warming have emerged as a critical task to threaten human survival. As a result, interest in the Zero Energy Building is increasing as it is an innovative building that can significantly contribute to building energy reduction and greenhouse gas reduction. In the market, however, the added cost of construction is a major stumbling block to the revitalization of the Zero Energy certification. In this study, general private apartment complexes were selected for research, detailed elements for Zero Energy certification were presented based on the construction criteria for eco-friendly houses from the initial design stage, and the cost efficiency analysis of the components for certification were presented. It has been analyzed that only Grade 3 certification can be implemented in apartments due to technical level and physical limitations. Also, after reviewing the cost trend during the lifecycle cost, all expenses can be recovered within 13 years after completion only in the case of grade 5 of the Zero Energy Building. The additional costs proposed in the present study are reflected appropriately in the review of projects for apartments scheduled for order in the future to contribute to the revitalization of the Zero Energy Building certification.

A Study on the Performance Increase in Building Energy Technology according to the Korea's Zero Energy Building Policy (한국의 제로에너지건축 정책 추진에 따른 건축물 에너지기술 성능 연구)

  • Shim, Hong-Souk;Lee, Sungjoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.543-553
    • /
    • 2021
  • As a key policy for achieving the goal of reducing GHG in the building sector, Korea has enforced the mandatory certification of zero-energy buildings for new buildings in the public sector from 2020. This study evaluated a policy to achieve Net Zero by identifying the trend of changes in building energy performance according to policy and presenting a methodology to analyze the current performance state of energy technology applied to buildings. The final goal was to help stakeholders apply appropriate energy technologies for new buildings. For this study, data collected on building energy efficiency certification over the last four years have shown a gradual increase in energy performance. In addition, K-means cluster analysis was used to analyze the performance status of energy technologies applied to buildings. The high and low clusters of education and office facilities were used to analyze the comparative group (2016-2020, 2020). As a result, the solar module area in both high and low clusters of education facilities increased by 261.1% and 283.5%. In contrast, the solar module area decreased by both high and low clusters of office facilities. The most passive and active technologies showed an increase in energy performance.

A Study on the Calculation Method of Load standard for ZEB activation (ZEB 활성화를 위한 부하기준 산정 방법 연구)

  • Lee, Hangju;Kim, Insoo
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.92-99
    • /
    • 2017
  • In Korea, the zero energy building was designated as the 7 new industries in the Ministry of Land and the 8 new industries in the Ministry of Industry. In order to maximize the insulation performance of the building envelope, improve the efficiency of building equipment, We are aiming. It is necessary to analyze the energy requirements of the buildings (cooling, heating, hot water supply, lighting, ventilation) of buildings with energy efficiency level of 1++ which is equivalent to the zero energy building certification system in Korea, It is aimed to be used as basic data for the advancement of energy building certification system. Zero Energy Building certification is estimated to be 61 buildings by 2017, and the approximate reference value and the first energy requirement for each of the five loads are calculated considering passive and active aspects. It is difficult to say that it is a clear standard because there is a small sample of data for calculating the load standard. However, it is necessary to interpret various methods in order to upgrade the Zero Energy Building certification standard in the future.

A study on the relationship between the existing building load for the advance ZEB certification system (ZEB 인증제 고도화를 위한 기존 건축물 부하별 연관성 연구)

  • Lee, Hangju;Maeng, Sunyoung;Kim, Insoo;Ahn, Jong-Wook
    • Journal of Energy Engineering
    • /
    • v.27 no.3
    • /
    • pp.21-27
    • /
    • 2018
  • In accordance with the implementation of the Zero Energy Building Certification System, it for the activation and expansion of the private sector is being steadily upgraded. Also The government has set up a step-by-step mandatory roadmap until it is expanded to the private sector, starting with the public sector. We analyzed the energy requirements of existing buildings from 2016 to 2017 and the by load relationships of major factor. Of the existing buildings, 714 buildings in central and southern areas excluding residential buildings such as apartments and officetels were classified and their primary energy requirements were analyzed. As new design technologies are applied, the demand for energy from the passive side is steadily declining. In addition, there is a need to interpret various methods to improve the zero energy building certification standard in the point that the zero energy building pilot project is continuously carried out in relation to the activation of renewable energy supply.

The Effect of a Geothermal Heat Pump and Photovoltaics Application on the Building Energy Efficiency and ZEB Certification Rating for a Non-Residential Building (지열 열펌프 및 태양광 발전 적용이 비주거용 건물의 에너지효율등급과 ZEB 인증 등급에 미치는 영향)

  • Geon Ho Moon;Chang Yong Park
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.19 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • Many government in the world have conducted building energy performance certification program to reduce building energy consumption. In this study, a reference building and its HVAC system was modeled, and the energy load and consumption were estimated by the ECO2 program. The software is a simple building energy simulation program based on monthly calculated method. The building energy efficiency rating the the reference building was 1+ under baseline condition. The simulation results showed that the insulation performance slightly affected building energy load and consumption, but light density had a significant effect on them. The application of geothermal heat pumps gave improvement of building energy efficiency rating but it could not make it possible to get zero energy building(ZEB) certification. The ZEB 5 certification could be achieved by using photovoltaics, however getting better grade was difficult. The simulation results showed that the ZEB 4 certification, one grade higher than ZEB 5, could be attained by using more than one renewable energy source such as geothermal and solar energy in this study.

An Analysis of the Self-reliance Rate by Element according to the Implementation of Zero Energy Certification System in School Facilities (학교시설 제로에너지인증제 시행에 따른 요소별 자립률 분석)

  • Meang, Joon-Ho;Kim, Sung-Joon;Lee, Seung-Min;Ko, Hyun-Su
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.20 no.1
    • /
    • pp.19-28
    • /
    • 2021
  • The Ministry of Land, Infrastructure, and Transport (MOLIT) is implementing a zero-energy building (ZEB) certification to save energy for the building section and to accelerate the achievement of national greenhouse gases reduction goals in accordance with a new climate regime. In 2014, the MOLIT announced a plan for early activation of the ZEB, and in January 2016, the "Green Buildings Construction Support Act" was revised and established. In addition, the plan was established to gradually spread zero-energy buildings from the public sector in 2020 to the private sector by 2025. Therefore, this study analyzed the self-sufficiency rate of each energy factor according to the implementation of the zero energy building certification of school facilities that belong to the public sector and are included in the mandatory zero energy buildings from 2020.

A Study on the Methodology of Building Energy Consumption Estimation and Energy Independence Rate for Zero Energy City Planning Phase (제로에너지시티 계획을 위한 건물에너지 수요 예측 방법론 개발 및 자립률 산정에 대한 연구)

  • Bae, Eun-ji;Yoon, Yong Sang
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.5
    • /
    • pp.29-40
    • /
    • 2019
  • In response to the rapid climate change, in order to save energy in the field of buildings, the country is planning not only zero energy buildings but also zero energy cities. In the Urban Development Project, the Energy Use Plan Report is prepared and submitted by predicting the amount of energy demand at the planning stage. However, due to the activation of zero-energy buildings and the increase in the supply of new and renewable energy facilities, the energy consumption behavior of buildings in the city is changing from the previous ones. In this study, to estimate urban energy demand of Zero Energy City, building energy demand forecasts based on "Passive plans for use of energy based primary energy consumption", "Actual building energy usage data from Korea Appraisal Board" and "data from Certification of Building Energy Efficiency Rating" as well as demand forecast according to existing "Consultation about Energy Use Plan Code" were calculated and then applied to Multifunctional Administrative City 5-1 zone to compare urban total energy demand forecasts.

A study on the analysis of energy performance for zero-energy building of rural village hall - Focused on the Jung Juk 4-le village hall - (농촌 마을회관 제로에너지 건축물 구축을 위한 에너지 성능 분석 연구 - 충남 태안군 정죽4리 마을회관을 중심으로 -)

  • Park, Mi-Lan;Choi, Jeong-Man;Lee, Jeong-Hun
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.20 no.4
    • /
    • pp.1-8
    • /
    • 2018
  • In this study, we survey the 2 buildings at the Central 1 and 8 buildings at the Central 2, which are divided by each climate region in the rural regions. Major heat loss factors are 47% loss of the outer shell including outer wall, roof, and bottom, 30% loss through window, and 23% loss through crevice wind. We analyze the energy simulation of ECO2 program to construct a zero energy building regarding village hall located in Jung Juk 4-le at Centeral 2. We simulate the primary energy requirement regarding village hall and the simulated results show the $265.3kWh/m^2{\cdot}a$ and it may estimate '2' energy efficiency grade. The energy requirement regarding village hall is the $183.2kWh/m^2{\cdot}a$ when the passive technology are applied in village hall. We research total amount of energy requirement in village hall when the passive and active technologies such as solar cell with 3kW and solar thermal with $20m^2$, geothermal power with 17.5kW. The simulated results show the improved energy efficiency certification grade with $1^{{+}{+}{+}}$ due to the reduced primary energy requirement with 73% when passive technology including 3kW of solar panel is applied and the energy independence rate is 54%, which is estimated to be 4th grade of zero energy buildings. The order of energy consumption are solar panel, solar thermal, and geothermal power under applied passive technology in the building. In order to expand the zero energy building, it is necessary to introduce the zero energy evaluation system in the rural region.