• Title/Summary/Keyword: Zeolite-L

Search Result 171, Processing Time 0.03 seconds

Cure Characteristics of Metal Particle Filled DGEBA/MDA/SN/ zeolite Composite System for EMI Shielding

  • Cho, Young-Shin;Lee, Hong-Ki;Shim, Mi-Ja;Kim, Sang-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.548-551
    • /
    • 1999
  • The cure characteristics of metal particle filled DGEBA/MDA/SN/ zeolite epoxy resin composite system for EMI shielding were investigated by dynamic DSC run method and FT-lR spectroscopy. As the heating rate increased, the peak temperature on dynamic DSC curve increased because of the rapid cure reaction. From the straight line of the Kissinger plot, the curing reaction activation energy and pre-exponential factor could be obtained. As the post-curing time at 15$0^{\circ}C$ increased, the glass increased the glass transition temperature or the thermal stability increased. When the post curing time is too long, the system filled with metallic Al particle can be thermally oxidized by the catalytic reaction of metal filler and the thermal stability of the composite for the EMI shielding application may be decreased.

  • PDF

WASTEWATER TREATMENT USING COMBINATION OF MBR EQUIPPED WITH NON-WOVEN FABRIC FILTER AND OYSTER-ZEOLITE COLUMN

  • Jung, Yoo-Jin;Koh, Hyun-Woong;Shin, Won-Tae;Sung, Nak-Chang
    • Environmental Engineering Research
    • /
    • v.10 no.5
    • /
    • pp.247-256
    • /
    • 2005
  • A combination of the submerged membrane activated-sludge bioreactor(SMABR) equipped with non-woven fabric filter and oyster-zeolite (OZ) packed-bed adsorption column was studied to evaluate the advanced tertiary treatment of nitrogen and phosphorous. The non-woven filter module was submerged in the MBR and aeration was operated intermittently for an optimal wastewater treatment performance. Artificial wastewater with $COD_{Cr}$ of 220 mg/L, total nitrogen (T-N) of 45 mg/L, and total phosphorous (T-P) of 6 mg/L was used in this study. MLSS was maintained about $4,000\;{\sim}\;5,000\;mg/L$ throughout the experiments. The experiments were performed for 100-day with periodic non-woven filter washing. The results showed that $COD_{Cr}$ could be effectively removed in SMABR alone with over 94% removal efficiency. However, T-N and T-P removal efficiency was slightly lower than expected with SMABR alone. The permeate from SMABR was then passed through the OZ column for tertiary nutrients removal. The final effluent analysis confirmed that nutrients could be additionally removed resulting in over 87% and 46% removal efficiencies for T-N and T-P, respectively. The results of this study suggest that the waste oyster-shell can be effectively reclaimed as an adsorbent in advanced tertiary wastewater treatment processes in combination with SMABR equipped with non-woven fabric filter.

Antibiotic Uptake Reducing Effect of Zeolite and Shell Meal Fertilizer Amendment for Lettuce (Lactuca sativa L.) Cultivation Fertilized with Chicken Manure Compost

  • Seo, Youngho;Lim, Soojeong;Choi, Seungchul;Heo, Sujeong;Yoon, Byeongsung;Park, Younghak;Hong, Daeki
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.51 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • The veterinary antibiotics treated to livestock have a potential risk to reach to soil and water environment, and eventually be taken up by plants. The objective of the study was to investigate the effect of zeolite and shell meal fertilizer amendment on antibiotic uptake by plant when veterinary antibiotics in chicken manure compost were applied to agricultural land. Model antibiotics used in the study were chlortetracycline (CTC), tylosin (TYL), and sulfamethazine (SMT). Chlortetracycline level in lettuce was decreased to less than $0.08ug\;kg^{-1}$ by application of zeolite as compared with about $0.26ug\;kg^{-1}$ for control without amendment on 33 days after transplanting. Tylosin was not detected for all the treatment. Sulfamethazine levels in lettuce ranged from 11 to $19{\mu}g\;kg^{-1}$ on a fresh weight basis and gradually decreased with time. Zeolite application decreased the SMT levels in lettuce by greater extent than shell meal fertilizer amendments. Results from the 61-d greenhouse experiment imply that application of zeolite at a rate of $1.5Mg\;ha^{-1}$ or shell meal fertilizer at a rate of $2.0Mg\;ha^{-1}$ can reduce CTC and SMT concentration in lettuce cultivated in soil fertilized with antibiotic-contaminated chicken manure compost.

A Test of Relative Removal Properties of Various Offensive Odors by Zeolite

  • Adelodun, Adedeji A.;Vellingiri, Kowsalya;Jeon, Byong-Hun;Oh, Jong-Min;Kumar, Sandeep;Kim, Ki-Hyun
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.1
    • /
    • pp.15-28
    • /
    • 2017
  • The adsorptive removal properties of synthetic A4 zeolite were investigated against a total of 16 offensive odors consisting of reduced sulfur compounds (RSCs), nitrogenous compounds (NCs), volatile fatty acids (VFAs), and phenols/indoles (PnI). Removal of these odors was measured using a laboratory-scale impinger-based adsorption setup containing 25 g of the zeolite bed (flow rate of $100mL\;min^{-1}$). The high est and lowest breakthrough (%) values were shown for PnIs and RSCs, respectively, and the maximum and minimum adsorption capacity (${\mu}g\;g^{-1}$) of the zeolite was observed for the RSCs (range of 0.77-3.4) and PnIs (0.06-0.104), respectively. As a result of sorptive removal by zeolite, a reduction in odor strength, measured as odor intensity (OI), was recorded from the minimum of approximately 0.7 OI units (indole [from 2.4 to 1.6]), skatole [2.2 to 1.4], and p-cresol [5.1 to 4.4]) to the maximum of approximately 4 OI units (methanethiol [11.4 to 7.5], n-valeric acid [10.4 to 6.5], i-butyric acid [7.9 to 4.4], and propionic acid [7.2 to 3.7]). Likewise, when removal was examined in terms of odor activity value (OAV), the extent of reduction was significant (i.e., 1000-fold) in the increasing order of amy acetate, i-butyric acid, phenol, propionic acid, and ammonia.

Adsorption Characteristics of Ni2+, Zn2+ and Cr3+ by Zeolite Synthesized from Jeju Scoria (제주 스코리아로부터 합성한 제올라이트에 의한 Ni2+, Zn2+ 및 Cr3+의 흡착 특성)

  • Kim, Jung-Tae;Lee, Chang-Han;Kam, Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.29 no.7
    • /
    • pp.739-748
    • /
    • 2020
  • The characteristics of heavy metal ion (Ni2+, Zn2+, and Cr3+) adsorption by zeolite synthesized from Jeju scoria using the fusion and hydrothermal method, were studied. The synthetic zeolite was identified as a Na-A zeolite by X-ray diffraction analysis and scanning electron microscopy images. The equilibrium of heavy metal ion adsorption by synthetic zeolite was reached within 60 min for Ni2+ and Zn2+, and 90 min for Cr3+. The uptake of heavy metal ions increased with increasing pH in the range of pH 3-6 and the uptake decreased in the order of Cr3+ > Zn2+ > Ni2+. For initial heavy metal concentrations of 20-250 mg/L at nonadjusted pH, the adsoption of heavy metal ions was well described by the pseudo second-order kinetic model and was well fitted by the Langmuir isotherm model. The maximum uptake of heavy metal ions obtained from the Langmuir model, decreased in the order of Zn2+ > Ni2+ > Cr3+, differing from the effect of pH on the uptake, which was mainly based on the different pH of the solutions.

Recovery of nitrogen from high strength waste stream by using natural zeolite (Clinoptilolite) (천연 제올라이트를 이용한 고농도 질소 회수)

  • Choi, Oh Kyung;Lee, Kwanhyoung;Dong, Dandan;Lee, Jaewoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.1
    • /
    • pp.105-111
    • /
    • 2016
  • This paper presents the applicability of natural zeolite (Clinoptilolite) for recovery of ammonium nitrogen from high-strength wastewater stream. Isotherm experiments showed the ammonium exchange Clinoptilolite followed Freundlich isotherm and its maximum exchange capacity was $18.13mg\;NH_4{^+}-N/g$ zeolite. The X-ray photoelectron spectroscopy (XPS) analysis indicated that a significant amount of nitrogen was adsorbed to the Clinoptilolite. Optimal flowrate for recovery of high concentration ammonium nitrogen was determined at 16 BV/d (=19.2 L/min) throughout the lab-scale column studies operated under various flowrate conditions. This study also provided a method to determine the recovery rate of final product of nitrogen fertilizer based on the model application to the lab-scale continuous data.

Effect of Carriers on Residue of Wetting Agent Containing Polyoxyethylene Laury Ether, Initial Wetting and Water Movement in Container Media (증량제의 종류가 Polyoxyethylene Laury Ether를 포함한 토양습윤제의 상토 내 잔류성, 상토의 수분 보유 및 이동에 미치는 영향)

  • Choi, Jong Myung;Chung, Hae Joon;Shim, Jai Sung
    • Horticultural Science & Technology
    • /
    • v.19 no.4
    • /
    • pp.596-601
    • /
    • 2001
  • This study was carried out to determine the effect of base carriers such as zeolite or vermiculite on change of concentration of polyoxyethylene laury ether[$C_{12}H_{25}O(C_{2}H_{4}O)_{3}H$, PLE] and on initial wetting of peat-vermiculite medium in the development of a soil wetting agent using the mixture of PLE and polyoxyethylene+polyppro-pyleneoxide tridecylether (1:1, w/w, CM-1). The concentration of PLE in the treatment of vermiculite was higher than that of zeolite during the period from 2 to 6 weeks. The cumulative concentration of PLE released in the treatment of vermiculite was about $2800mg{\cdot}L^{-1}$ and zeolite was about $2300mg{\cdot}L^{-1}$. The treatments of PLE+CM-1 with zeolite or vermiculite as a carrier were effective in initial water retention of root media having more than 510 mL of water per pot, where as those of $AquaGro^{G}$ and control had 490 mL and 400 mL of water per pot, respectively. In the evaporative water loss, the treatment of zeolite and $AquaGro^{G}$ were faster than that of control and vermiculite. The control treatment had the fastest water movement in and the highest volume of water infiltrating into root medium among all treatments. Increased application rate of PLE+CM-1 did not increase water retention capacity. The treatment of $0.6g{\cdot}L^{-1}$ had the highest evaporative water loss and that of $0.3g{\cdot}L^{-1}$ had the highest amount of water infiltrating into root media among all other treatments.

  • PDF

Desorption of Water, Ammonia, and Methylamines on $K^+$ Ion Exchanged Zeolite L (칼륨 이온 치환 제올라이트-L 에서 물, 암모니아 및 메틸아민류의 탈착)

  • Sung-Doo Moon;Dai-Ung Choi;Un-Sik Kim;Yang Kim
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.171-178
    • /
    • 1988
  • The potential energy of adsorbate molecules in the main channel of $K^+$ ion exchanged zeolite L(K-L) was calculated. In K-L which adsorbs three molecules per unit cell, the interaction energies of $H_2O,\;NH_3,\;CH_3NH_2,\;(CH_3)_2NH,\;and\;(CH_3)_3N$ molecules with zeolite lattice are 61.11, 62.31, 65.68, 74.65, and 79.88kJ/mol, respectively. These values are less by 3.7∼12.6kJ/mol than $K^+$ ion affinities with adsorbing molecules. These results may be due to the facts that the electrostatic energies are reduced by the negative charge of the lattice oxygens. The distribution of adsorption sites of $NH_3$ and $CH_3NH_2$ in K-L was investigated by a technique of temperature programmed desorption. The experimental value of desorption energies of $NH_3$ and $CH_3NH_2$ on K-L are in good agreement with the theoritical values. It is concluded that the desorption of $NH_3$ and $CH_3NH_2$ on K-L is the first-order desorption with free readsorption.

  • PDF

Crystallographic Studies of Dehydrated $Ag^{+}\;and\;K^{+}$ Exchanged Zeolite A Reacted with Alkali Metal Vapor

  • Yang Kim;Mi Suk Jeong;Karl Seff
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.5
    • /
    • pp.603-610
    • /
    • 1993
  • The crystal structure of dehydrated $Ag_{5.6}K_{6.4}-A$, zeolite A ion-exchanged with $K^+\;and\;Ag^+$ as indicated and dehydrated at 360$^{\circ}$C, has been determined by single-crystal X-ray diffraction techniques. Also determined were the structures of the products of the reactions of this zeolite with 0.1 Torr of Cs vapor at 250$^{\circ}$C for 48 h and 72 h, and with 0.1 Torr of Rb vapor at 250$^{\circ}$C for 24 h. The structures were solved and refined in the cubic space group Pm3m at 21(l)$^{\circ}$C (a= 12.255(l) ${\AA}$ , 12.367(l) ${\AA}$, 12.350(l) ${\AA}$, and 12.263(l) ${\AA}$, respectively). Dehydrated $Ag_{5.6}K_{6.4}$-A was refined to the final error indices $R_1= 0.044\;and\;R_2=0.037$ with 202 reflections for which I>3${\sigma}$(I). The crystal structures of the reaction products were refined to $R_1=0.087\;and\;R_2= 0.089$ with 157 reflections, $R_1=0.080\;and\;R_2= 0.087$ with 161 reflections, and $R_1= 0.071\;and\;R_2=0.061$ with 88 reflections, respectively. In the structure of $Ag_{5.6}K_{6.4}-A,\;K^+$ ions block all 8-oxygen rings, and one reduced Ag atom is found per sodalite cavity. Also, ca. 4.6 $Ag^+ ions\;and\;3.4 K^+ ions$ are found at 6-ring sites in the large cavity. The crystal structures of the reaction products show that all $K^+$ and $Ag^+$ ions have been reduced, and that all K^+$ atoms have left the zeolite. Cs or Rb species are found at three different crystallographic sites: 3.0 $Cs^+\;or\;3.0Rb^+$ ions per unit cell occupy 8-ring centers, ca. 8.0 $Cs^+ ions\;or\;5.7 Rb^+$ ions, are found on threefold axes opposite 6-rings deep in the large cavity, and ca. 2.5 $Cs^+\;or\;2.3 Rb^+ ions are found on threefold axes in the sodalite unit. Also, 1 $Rb^+$ ion lies opposite a 4-ring. Silver atoms, corresponding to 75% or 40% occupancy of hexasilver clusters stabilized by coordination to $Cs^+\;or\;Rb^+$ ions, are found at the centers of the large cavities. In the crystal structures of dehydrated Ag_{5.6}K_{6.4}-A$ reacted with Cs vapor, excess Cs atoms are absorbed and these form (locally) cationic clusters such as $(Cs_4)3^+\;and\;(Cs_6)4^+$.

Metal-Modified Natural Zeolite for Bacterial Media (미생물 담체 성능 향상을 위한 금속 치환)

  • Kim, Jae-Keun;Min, Jee-Eun;Park, Jae-Woo
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.811-813
    • /
    • 2008
  • To see the effect of magnesium on adhesion to natural zeolites, a series of batch tests were performed in this research. Mixed bacteria were sampled from the digestion tank at a local sewage treatment plant in Seoul. Magnesium-zeolites were synthesized by mixing natural zeolites with 0.096 M, 0.24 M, and 0.48 M of MgCl2 solution. For comparison, manganese and trivalent ferric zeolites were also prepared. Two grams of 0.2 mm $\sim$ 0.3 mm sized zeolites(non-treated, Mg, Mn and Fe(III) treated zeolites) and 20 mL of water were mixed in a Corex 25 mL tube. Five milliliters of culture solution including bacteria was added to the tube. The tubes were equilibrated in a shaking incubator at mesophilic temperature $(30{\pm}2^{\circ}C)$. The bacterial concentrations were measured with a Microluminometer (New Horizons 3550i) and total organic carbon (TOC) spectrophotometer (Multi NC-3100).

  • PDF