• Title/Summary/Keyword: Zeolite A,

Search Result 1,064, Processing Time 0.026 seconds

A Study on the Application of Adsorption Function in Metal Filter for the Removal of VOCs in Underground Facilities (지하시설 VOCs 제거를 위한 메탈 필터의 흡착기능부여 연구)

  • Jang, Younghee;Lee, Sang Moon;Yang, Heejae;Kim, Sung Su
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.633-638
    • /
    • 2019
  • Indoor air quality underground facilities are not equipped for the removal of volatile organic compounds (VOCs) and they are usually treated by diffusion methods such as ventilation. In this study, an adsorption filter was prepared using various coating methods such as carbon nano fiber (CNF) and dip coating. As a result, the adsorption performance was improved by 2 to 20 times or more compared to that of using the metal foam support. This is maybe due to the enhancement of pore distribution which was confirmed by SEM. In addition, the adsorption performance was 13.95 mg/g by adding lignin, and also an average adsorption performance of 13.25 mg/g was maintained after washing indicating that a highly durable adsorption filter material was prepared. It can be suggested that the developed adsorption filter material can be a potential solution that can fundamentally control VOCs, not via the concentration reduction of mechanical ventilation in underground facilities.

Comparison of Cs and Sr Ion Adsorption Capacities with Crystallinity of Zeolitic Materials Synthesized from Coal Fly Ash under Low-Alkaline Conditions (석탄 비산재로부터 저알칼리 조건에서 합성된 제올라이트 물질의 결정화도에 따른 Cs 및 Sr 이온의 흡착 용량 비교)

  • Choi, Jeong-Hak;Lee, Chang-Han
    • Journal of Environmental Science International
    • /
    • v.31 no.2
    • /
    • pp.171-180
    • /
    • 2022
  • Zeolitic material, Z-Y3, was synthesized from coal fly ash (CFA) under low-alkaline conditions (NaOH/CFA ratio = 0.3 and NaOH solution concentrations of 0.0, 0.5, and 1.0 M) using a fusion/hydrothermal method. The adsorption capacities of the fabricated Z-Y3 samples for Cs and Sr ions and the desorption capacity of Na ions were evaluated. The XRD patterns of the Z-Y3 sample fabricated using a 1.0 M NaOH solution (Z-Y3 (1.0 M)) indicated the successful synthesis of a zeolitic material, because the diffraction peaks of Z-Y3 coincided with those of the Na-A zeolite in the 2θ range of 7.18-34.18. Moreover, the SEM images revealed that morphology of the Z-Y3 (1.0 M) sample, which presented zeolitic materials characteristics, consisted of sharp-edged cubes. The adsorption isotherms of Cs and Sr ions on all the fabricated Z-Y3 samples were described using the Langmuir model, and the maximum adsorption capacities of Cs and Sr were calculated to be 0.14-0.94 mmol/g and 0.19-0.78 mmol/g, respectively. The desorption of Na ions from the Cs and Sr ions adsorbed Z-Y3 samples followed the Langmuir desorption model. The maximum desorption capacities of Na ions from the Cs and Sr ions adsorbed Z-Y3 (1.0 M) samples were 1.28 and 1.49 mmol/g, respectively.

Effects of Additives on Greenhouse Gas Emission during Organic Waste Composting: A Review and Data Analysis (첨가제가 유기성 폐기물 퇴비화 과정 중 온실가스 발생에 미치는 영향: 리뷰 및 데이터 분석)

  • Seok-Soon Jeong;Byung-Jun Park;Jung-Hwan Yoon;Sang-Phil Lee;Jae-E. Yang;Hyuck-Soo Kim
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.4
    • /
    • pp.358-370
    • /
    • 2023
  • Composting has been proposed for the management of organic waste, and the resulting products can be used as soil amendments and fertilizer. However, the emissions of greenhouse gases (GHGs) such as CO2, CH4, and N2O produced in composting are of considerable concern. Hence, various additives have been developed and adopted to control the emissions of GHGs. This review presents the different additives used during composting and summarizes the effects of additives on GHGs during composting. Thirty-four studies were reviewed, and their results showed that the additives can reduce cumulative CO2, CH4, and N2O emission by 10.5%, 39.0%, and 28.6%, respectively, during composting. Especially, physical additives (e.g., biochar and zeolite) have a greater effect on mitigating N2O emissions during composting than do chemical additives (e.g., phosphogypsum and dicyandiamide). In addition, superphosphate had a high CO2 reduction effect, whereas biochar and dicyandiamide had a high N2O reduction effect. This implies that the addition of superphosphate, biochar, and dicyandiamide during composting can contribute to mitigating GHG emissions. Further research is needed to find novel additives that can effectively reduce GHG emissions during composting.

Structural Study of Selenium Sorption Complex of Fully Dehydrated, Partially Ca2+-exchanged Zeolite A (완전히 탈수되고 부분적으로 칼슘 이온으로 교환된 제올라이트 A의 셀레늄 수착 화합물의 구조 연구)

  • Kim, Hu Sik;Park, Jong Sam;Lim, Woo Taik
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.3
    • /
    • pp.251-258
    • /
    • 2020
  • Single crystal of fully dehydrated and partially Ca2+-exchanged zeolites A (|Ca4Na4|[Si12Al12O48]-LTA) was brought into contact with Se in fine pyrex capillary at 523 K for 5 days. Crystal structure of Se-sorbed |Ca4Na4|[Si12Al12O48]-LTA has been determined by single-crystal X-ray diffraction techniques at 294 K in the cubic space group $Pm{\bar{3}}m$ (a = 12.2787(13) Å). The crystal structure of yellow |Ca4Na4Se4|[Si12Al12O48]-LTA has been refined to the final error indices of R1/wR2 = 0.0960/0.3483 with 327 reflections for which Fo > 4s(Fo). In this structure, 4 Na+ and 4 Ca2+ ions fill every 6-ring site: These ions are all found at three crystallographic positions, on 3-fold axes equipoints of opposite 6-rings. Selenium atoms are found at three crystallographically distinct positions: 2 Se atoms per unit cell at Se(1) are located opposite 6-rings in the sodalite cavity (Se(1)-Na(1) = 2.53(5) Å) and 1 at Se(2) opposite 4-rings (Se(2)-O(1) = 2.76(10) Å) and 1 at Se(3) opposite 6-rings in the large cavity (Se(3)-Na(1) = 2.48(5) Å). Two molecular of Se2 (Se(1)-Se(1) = 2.37(7) or 2.90(8) Å and Se(2)-Se(3) = 2.91(5) ) Å) are found in all sodalite cavity and large cavity. Other clusters such as Se4 and Se8 could be existed in large cavity. The inter-selenium distances turned out to be longer that of gases Se2 molecule.

Catalytic Combustion of Methane over Pd-ZSM-5 Catalysts (Pd-ZSM-5 촉매 상에서 메탄의 연소)

  • Eom, Gi Tai;Park, Jin Woo;Ha, Jai-Mok;Hahm, Hyun Sik
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.878-883
    • /
    • 1998
  • The methane combustion reaction was conducted over Pb-ZSM-5 catalysts. ZSM-5 synthesized at low temperature and atomospheric pressure was used as a support. The change of methane conversion with $SiO_2/Al_2O_3$ molar ratio was tested. The methane conversions of the synthesized Pb-ZSM-5 catalyst was compared with those of a commercial Pd-ZSM-5(PQ Co.) and $PdO/{\gamma}-Al_2O_3$. The methane conversion increased with the decrease in $SiO_2/Al_2O_3$ molar ratio. The combustion rate of methane also increased with the decrease in $SiO_2/Al_2O_3$ molar ratio. The synthesized Pb-ZSM-5 showed better methane conversion than that of the commercial one. It is found that a crucial factor in methane combustion reaction is oxygen adsorption strength on the catalysts.

  • PDF

A Study of NH3 Adsorption/Desorption Characteristics and Model Based Control in the Urea-SCR System (Urea-SCR 시스템의 NH3 흡·탈착 특성 및 모델기반 제어 연구)

  • Ham, Yunyoung;Park, Suyeol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.3
    • /
    • pp.302-309
    • /
    • 2016
  • Urea-SCR system is currently regarded as promising NOx reduction technology for diesel engines. SCR system has to achieve maximal NOx conversion in combination with minimal $NH_3$ slip. In this study, model based open loop control for urea injection was developed and assessed in the European Transient Cycle (ETC) for heavy duty diesel engine. On the basis of the transient modeling, the kinetic parameters of the $NH_3$ adsorption and desorption are calibrated with the experimental results performed over the zeolite based catalyst. $NH_3$ storage or surface coverage of SCR catalyst can not be measured directly and has to be calculated, which is taken into account as a control parameter in this model. In order to reduce $NH_3$ slip while maintaining NOx reduction, $NH_3$ storage control algorithm was applied to correct the basic urea quantity. If the actual $NH_3$ surface coverage is higher than the maximal $NH_3$ surface coverage, the urea injection quantity is significantly reduced in the ETC cycle. By applying this logic, the resulting $NH_3$ slip peak can be avoided effectively. With optimizing the kinetic parameters based on standard SCR reaction, it suggests that a simplified, less accurate model can be effective to evaluate the capability of model based control in the ETC cycle.

Synthesis of Zeolites ZSM-5 and ZSM-48 from Gasification Ashes of Agricultural Wastes

  • Lin, Kuen-Song;Lin, Wen-Chiang;Chitsan Lin
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.610-615
    • /
    • 2001
  • Over 800 thousand tons per year (TPY) agricultural biowastes, such as sugar cane bagasse, sugarcane leaf, rice straw, rice husk and corn leaf, are produced in Taiwan. These biomasses are the major types of agricultural wastes and are abundantly available. However, these biowastes cause disposal and landfill problems. Ossification ashes of the agricultural biowastes containing 70-95 % amorphous silica would make the utilization system of agricultural biowaste ashes become highly economically and environmentally attractive. Experimentally, high crystallinity (99%$^{+}$) zeolites ZSM-5 and ZSM-48 synthesized from the reaction mixtures containing a silica source from ashes of these biowastes gasification were investigated. Tetrapropylammonium bromide (TPABr) and 1,6-diamino-hexane (C$_{6}$ DN) were used as structure-directing agents in syntheses of ZSM-5 and ZSM-48, respectively. X-ray powder diffraction (XRD) and scanning electron microscopy/energy dispersive spectroscopy (SEM/EDX) data indicated that ZSM-5 or ZSM-48 with a high crystallinity can be obtained within 48 hours of crystallization in the high pressure (15-20 atm) autoclave at 393-473 K. The Si/Al ratios of synthetic zeolite products were determined by X-ray fluorescence (XRF) and induced couple plasma/mass spectroscopy (ICP/MS). It was observed that the ZSM-5 crystals a.e composed of hexagonal rod-shaped crystals with typically 8-13 пm in size by SEM. In addition, ZSM-48 crystalline materials are composed of spherical aggregates of needle-shaped or rod-like crystals with typically 2-3 пm in diameter and 6-8 пm in length.h.

  • PDF

A Study on the Degradation Properties of MTBE in Solution using Ultrasound (초음파를 이용한 수용액 속의 MTBE 분해 특성 연구)

  • Kim, Heeseok;Yang, Inho;Oh, Jeill;Her, Nam Guk;Jeong, Sangjo
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.4
    • /
    • pp.522-529
    • /
    • 2009
  • To supply safe drinking water to areas lacking in water supply and drainage system, such as rural area and military bases in proximity to Demilitarized Zone, effective method for treating organic contaminants such as MTBE is required. This study focuses on seeking optimal conditions for effective degradation of MTBE using a bath type ultrasound reactor. Effectiveness of MTBE degradation by ultrasound is dependent on the frequency, power, temperature, treatment volume, initial concentration, catalyst, etc. In this study the degradation rate of MTBE by ultrasound was proportional to power/unit volume ratio and removal is relatively more efficient for 0.1 mM than for 1 mM of MTBE solution. Efficiency of ultrasound treatment for 1 mM MTBE solution was enhanced under bath temperature of $30^{\circ}C$ compared to $4^{\circ}C$, but the temperature effect was negligible for 0.1 mM MTBE solution. Also for 0.1 mM MTBE solution, effect of catalyst such as $TiO_2$ and $Fe^0$ on treatment speed was negligible, and zeolite even increases the time taken for the degradation. Under these specific experimental conditions of this study, the most determinant factor for degradation rate of MTBE in solution was frequency and power of ultrasound. The results have shown that a continuous ultrasound reactor system can be used for small scale remediation of organically polluted groundwater, under optimal conditions.

Odor Removal with Powdered Adsorbent using Bag-filter System (분말 흡착제를 이용한 악취 저감 여과 집진장치 개발연구)

  • Xu, Rong-bin;Kim, Tae-Hyeung;Ha, Hyun-Chul;Piao, Cheng-Xu
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.27 no.4
    • /
    • pp.291-301
    • /
    • 2017
  • Objectives: In order to improve the working environment and solve the complaints, many efforts have been made to remove the odor from the industrial process. There are many disposal methods to remove odor, but there are many disadvantages and inadequate applications. The Purpose of this study was to develop a bag-filer system for odor removal using powder adsorbent. Methods: The bag-filter system is composed of a shear bag filter, an absorbent spraying system and an absorbent circulation system. The spraying absorbent system was connected with the inlet duct of the shear bag filter for inputting adsorbent. And the absorbent circulation system can transport the collecting adsorbent from hoper to the inlet duct of the system. As a result, the adsorbent can remove odor with recycling in the system. Also affective factors like the powdered absorbent combination and injection method was researched for maximization of system efficiency. The study was conducted in two stages. The first step was testing equipment made and the second is to evaluate the efficiency of the odor control by connecting to the actual odor generation process. Results: Both experiment stages showed efficient odor control ability. The adsorption efficiency of the system is demonstrated and the odor was adsorbed well by the powder adsorbent. It is essential to accurately understand the characteristics of the odorous and use the appropriate adsorbent. Although the powder adsorbent was used in the experiment, the problem of scattering did not occur due to the high degree of system sealing. Also the system manufactured in this study was designed to recycle the adsorbent, so adsorbent reuse or batch processing is convenient. Conclusions: The applicability of the system has been proven through this research. Customized systems for industrial process and the appropriate adsorbent base on the characteristics of pollutant generation will show efficient odor collection ability.

Effect of Serpentine as Soil Conditioner on Growth of Turfgrass (토양 개량재로서 사문석이 잔디의 생육에 미치는 영향)

  • 태현숙;고석구;김용선
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.3
    • /
    • pp.86-93
    • /
    • 2002
  • The objectives of this research were to investigate the effect of serpentine as a new soil conditioner for growth of turfgrass. To achieve the goal, pure sand or mixtures of sand and serpentine with various ratios were tested for soil physical properties and the growth effects of perennial ryegrass and zoysiagrass growth were compared. Major results of this research are summarized as follows; 1) Hydraulic conductivity of 10~30% serpentine mixtures were observed within the range of 1010~901mm/h which is good for USGA recommendation. Experimental results of pH and EC for various mixtures indicated that the 10% serpentine mixture was the most suitable for turfgrass growth. 2) Perennial ryegass treated with 10% serpentine mixture showed the highest visual quality(p<0.01) among all treatments. And serpentine treatment was more effective to improve visual quality of perennial ryegrass than that of zoysiagrass. The treatment of 10% serpentine had better visual qualities than that of 20% in both of zoysiagrass and perennial ryegrass. Treatment with the right amount of serpentine extends green period for one to two weeks during early winter in both zoysiagrass and perennial ryegrass. 3) In perennial ryegrass, the treatment of 10% serpentine resulted in an increase of total dry weight compare with those of zeolite or barley stone, and also dramatically promoted the dry weight by 15% compared with sand 100%(control). Total dry weight of zoysiagrass treated with 10% serpentine was 9% higher than that of san. These results indicated that serpentine can be a good soil conditioner for both zoysiagrass and perennial ryegrass when it is blended with sand within a range of 10 to 20% by volume.